

SPINAL TUMORS: A CONCEPT OF INTEGRATED ASSESSMENT IN RELATION TO EMERGENCY CONDITIONS

M.A. Mushkin¹, A.K. Dulaev^{1, 2}, A.Yu. Mushkin³

¹Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
²Saint-Petersburg Research Institute of Emergency Medicine n.a. I.I. Dzhanelidze, Saint-Petersburg, Russia
³Research Institute of Phthisiopulmonology Health Ministry of Russian Federation, Saint-Petersburg, Russia

A modern concept of assessing tumor lesions of the spine, NOMS, adapted to the conditions of emergency care is presented as a part of a systematic review of the literature. Principles of neurological, oncological, mechanical and system analysis of spine lesions in primary and metastatic spinal tumors, which are the basis for step-by-step tactical decisions, as well as methods for analyzing each component are described.

Key Words: spinal tumors, urgent healthcare, NOMS, SINS.

Please cite this paper as: Mushkin MA, Dulaev AK, Mushkin AYu. Spinal tumors: a concept of integrated assessment in relation to emergency conditions: literature review. Hir. Pozvonoc. 2018;15(3):92-99. In Russian. DOI: http://dx.doi.org/10.14531/ss2018.3.92-99.

Primary spinal tumors in adults are quite rare: in this age group, most spinal tumors are of metastatic origin, and the spine itself is the most frequent localization of bone metastases whose growing incidence is due to an increasing life span and, correspondingly, a growing proportion of elderly people in the population [1, 3, 17]. According to the American Academy of Orthopedic Surgeons (AAOS), spinal metastases occur in approximately 20 % of oncologic patients, with 5 to 10 % of these lesions being accompanied by compression of the spinal cord. However, insufficient prophylaxis and medical culture may lead to the fact that emergency condition becomes the first disease manifestation. For example, according to the Saint-Petersburg Dzhanelidze Research Institute of Emergency Medicine data (2012), 47.8 % (11 of 23) of patients with metastatic spine lesions had no oncologic history at primary admission to spinal departments [2].

The goal of treating spinal metastases usually reduces to control of pain intensity, preservation or restoration of neurological functions, local control of tumor growth, preservation of spinal motion segment stability, and improvement of the patient's quality of life. Improvements in chemotherapy, radiotherapy,

and hormonal therapy have significantly increased survival of oncologic patients [18], and their expectations about the quality of life have become an important factor for making tactical and therapeutic decisions. For this reason, emergency conditions in spinal tumors include not only aggravating compressive myelopathy or caudopathy, a particular variant of which is epidural spinal cord compression (ESCC) [33], but also pronounced pain (VAS score ≥7) caused by either spine instability or compression of the spinal structures and roots, which is managed only by narcotic analgesics.

The most common sources of metastatic spinal lesions are breast, lung, kidney, prostate, and thyroid gland tumors as well as melanoma, myeloma, lymphoma, and colorectal cancer [1, 20, 21]. At the same time, according to modern principles of cancer care, chemotherapy or radiotherapy can not be performed without histological confirmation of the diagnosis. Histological examination of bone tissue usually takes at least 7 days from the time of material sampling, and the patient has no antitumor treatment during this period. In these cases, in the presence of compression myelopathy, therapeutic delay may dramatically reduce the chance of motor function recovery. It should be remembered that

metastatic lesions usually mean that the process is no longer at an early stage: these patients are initially weakened due to high tumor burden, which addresses the issue of an adequate amount of possible surgery.

Decompression surgery without spine stabilization, which was previously used in neoplastic spinal cord compression, led to unsatisfactory results, often worsening the patients' quality of life, which gave rise to the opinion that radiotherapy is a more preferable treatment for these patients [10, 34, 40, 43]. Later, the modern surgical tactics including decompression of the neural structures and stabilization of the spine was demonstrated to provide better results in patients than radiotherapy alone, including a higher quality of life, even though its expected duration may be less than two years [20, 27, 34, 38, 41]. That is why surgery should not reduce quality of the survival period, and the risk of postoperative complications, whose rate may reach 20-30 %, should be compared with potential benefits [9, 16, 35]. This is especially true for complex extensive en bloc resections that are associated with a higher risk of complications compared to procedures such as curettage [25, 32, 36, 37].

Surgeries for emergency conditions are often not radical, but improve the

patient's quality of life and increase the life span by reducing the tumor mass volume and tumor intoxication. This also applies to ESCC patients in whom the risk of hypostatic complications (congestive pneumonia, pressure sores, PATE) is abruptly reduced in the case of improvement/recovery of the motor status.

According to the AAOS recommendations, surgery should be performed only if the patient's life expectancy exceeds 3 months because this period is necessary for recovery from spinal surgery (National Collaborating Center for Cancer, 2008). This estimate is usually made by oncologists; but in emergency situations, the decision is made by the surgeon who should assess the potential risks and benefits of surgery and understand what factors may be used to predict the quality and longevity of life, from which he must decide on the need for an emergency operation.

To objectify making tactical decisions in the case of metastatic spinal lesions, the Memorial Sloan-Kettering Cancer Center (MSKCC) developed the NOMS framework, whose name is an abbreviation of the first letters of the four main evaluation criteria: neurological (N), oncological (O), mechanical (M), and systemic (S).

In this review, we present the modern evaluation criteria for each of the components of this system.

Neurological evaluation

A standardized assessment of neurological disorders in patients with spinal tumors is based on analysis of the severity of epidural spinal cord compression (ESCC) and its structures. To objectify this indicator, the Spine Oncology Study Group (SOSG) adopted a classification system [5] based on analysis of axial T2-weighted MRI scans at the site of the most severe compression (Fig., Table 1). In the absence of mechanical instability, grades 0, 1a, and 1b are considered as indications for radiotherapy as an initial treatment option; grades 2 and 3 are considered as high-grade epidural compression requiring surgical treatment before the course of radiotherapy, except cases of high tumor sensitivity. The role of surgical and radiosurgical techniques at

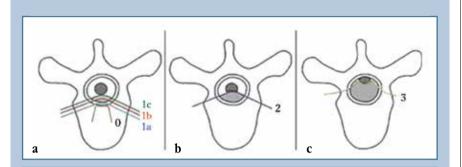
the compression grade 1c has remained uncertain: the introduction of high-dose hypofractionated radiation enables the use of stereotactic surgery as an optimal method of reducing toxicity for the spinal cord structures. In cases of indolent instability and the absence of histological verification of the diagnosis, the amount of specialized care may be limited only to targeted trepanation biopsy.

Oncological evaluation

Currently, radiation therapy remains the most effective and least invasive method for controlling local tumor growth. Perhaps, for this reason, oncological evaluation of spinal tumors is largely reduced to assessment of their radiosensitivity.

Tumors are differentiated into radiosensitive and radioresistant ones based on their response to conventional External Beam Radiation Therapy (cEBRT) delivered by one or two beams without the use of precise conformal techniques. The fraction dose that can be delivered using cEBRT is significantly limited when the spinal cord is close to the irradiation area. In this case, the histological type of tumor is unambiguously defined as the main factor of its sensitivity to radiation therapy: lymphoma, seminoma, and myeloma are the most sensitive tumors; radiation therapy is recommended for their vertebral metastases, regardless of the grade of ESCC or neurological deficit [15, 24].

Solid tumors have a wide spectrum of radiosensitivity. Radiosensitive neoplasms include breast, prostate, and ovarian cancers and neuroendocrine tumors; radioresistant tumors are kidney carcinoma, thyroid carcinoma, hepatocellular carcinoma, non-small cell lung tumors, sarcoma, and melanoma. In the case of highly radioresistant tumors, local control is achieved by means of stereotactic radiosurgery; in this case, the radiation dose and fractionation can vary depending on the purpose of radiotherapy. A short course (800 cGy*1 and 400 cGy*5) provides a short-term palliative effect; a long course of radiotherapy with a higher total dose enables longer local control of tumor growth [8, 28].


Many authors support the use of cEBRT for tumors with high sensitivity to radiation therapy even in the case of high-grade ESCC because it is able to cause mitotic catastrophe and a subsequent reduction in compression without significant damage to the spinal cord and meningeal structures [6, 24].

Radioresistant tumors without high-grade ESCC signs. In most cases, these tumors are favorable for performing stereotactic radiosurgery (SRS). Gerszten and co-authors [15] reported a positive clinical and radiation response to high-dose SRS in 85% of cases, regardless of the histological type of tumors; in 85–92 % of cases, the technique was effective for pain control [13, 14, 29, 30]. Among 413 patients treated with SRS at a dose of 24 Gy, the 4-year recurrence rate was only 2.1 %, regardless of the histological type of tumor [42].

Therefore, in the case of a verified diagnosis and absence of instability signs, managing of patients with spinal tumors at an emergency medicine hospital is hardly advisable; in these cases, it is more reasonable to refer the patient to a center providing SRS.

Radioresistant tumors with high-grade ESCC signs. Patients with metastatic spinal lesions and grade 2 or 3 ESCC require surgical decompression and stabilization before image-guided radiation therapy (IGRT). Patchell and co-authors [27] demonstrated that surgical decompression followed by cEBRT provided a significantly better result in terms of survival, general ability to motion, preservation and recovery of the ability to move, preservation of pelvic functions, and the need for narcotic analgesics compared to that of cERBT alone. However, the authors did not obtain significant differences in the duration of hospital stay among compared groups.

The main task of surgery is preservation or restoration of mechanical stability and circulatory decompression of the dural sac/spinal cord, which are aimed at preserving neurological functions, creating conditions for radiotherapy, and achieving adequate local control of tumor growth. The performed analysis revealed that all treatment failure cases

Fig. Classification of the epidural spinal cord compression (ESCC) severity based on the SOSG criteria [5]: **a** – grade 0 and 1; **b** – grade 2; **c** – grade 3

Table 1
Classification of the epidural spinal cord compression (ESCC) severity based on the SOSG criteria [5]

Grade 0	Bone involvement only			
Grade 1a	Epidural impingement without deformation of the dural sac			
Grade 1b	Deformation of the dural sac without signs of spinal cord abutment			
Grade 1c	Deformation of the dural sac with spinal cord abutment			
Grade 2	Spinal cord compression but CSF visible			
Grade 3	Spinal cord compression but no CSF seen			

had a dose of less than 15 Gy in some part of the planning target volume [23]. If the tumor margin is not delimited from the spinal cord structures, a dose of 15 Gy can not be delivered throughout its entire border without the risk of injury to the spinal cord structures. Given this fact, at least small (2 mm) separation between the tumor and the spinal cord structures is required to avoid insufficient exposure of all parts of the planned target. On this basis, it was concluded that surgery may be recommended for patients with radioresistant tumors with high-grade ESCC, and the term "separation surgery" was introduced to describe interventions where minimal surgical tumor resection is performed only to separate the tumor margin from the spinal cord for further use of SRS.

Therefore, comprehensive neurological and oncological assessment enables identification of groups of spinal tumors that require immediate radiation therapy or surgical decompression. Based on the

recommendations, surgical decompression should be performed before radiation therapy for radioresistant tumors with grade 2 or 3 ESCC. The absence of histological verification in grade 2 or 3 ESCC necessitates decompression surgery with an operative biopsy. However, we could not find information on the need for cytoreductive intervention in patients with high-grade ESCC in the absence of a verified diagnosis.

Mechanical evaluation

Radiation therapy and decompression of the spinal cord provide certain local control of tumor growth, but do not affect mechanical stability, and in some cases may exacerbate it [31]. Mechanical instability in neoplastic diseases is considered as an independent indicator in the planning of surgery, which does not depend on the grade of ESCC and tumor sensitivity to radiation therapy and, according to the SOSG definition, is loss of structural spinal integrity, which leads to movement-associated pain, symptom-

atic or progressive deformity, and/or neural compromise under physiologic loads [11]. The mechanical stability is evaluated based on clinical and radiological findings.

Pain due to mechanical instability of the spine should be differentiated from tumor-associated pain of a biological nature. Clinically, pain due to mechanical instability is associated with movement and manifests in the area corresponding to the lesion. Pain of a biological nature is time-dependent (manifests in the evening and morning) and, in contrast to mechanical pain, regresses on the background of corticosteroid and radiation therapy.

Tumor growth and infiltration of the vertebral body and facet joint cause failure of support function and may lead to collapse of the radicular foramen in the vertical position and compression of the corresponding root. Patients with obvious manifestations of mechanical instability require surgical stabilization. At the same time, if there is no gross mechanical instability or significant involvement of the posterior supporting column, painful pathological compression fractures in the setting of tumor can be treated with cement vertebroplasty or kyphoplasty procedures [4, 7, 19]. Furthermore, the systematic SOSG review strongly recommends the use of these procedures for symptomatic osteolytic tumors [26].

For quantitative objectification of tumor-related instability of the spine, an 18-point Spinal Instability Neoplastic Score (SINS) scale was developed [11, 12], which includes six parameters: the level and location of the lesion, pain features, spinal deformity, destruction nature (osteolysis), vertebral body collapse, and posterior spinal element involvement (Table 2).

Lesions with a low SINS score (0 to 6) are usually stable and do not require surgical fixation, whereas a high score (13–18) indicates the need for surgical intervention to restore mechanical stability. Intermediate SINS scores (7–12) require further examination both to determine the need for surgery and to address the need for vertebroplasty and kyphoplasty.

Systemic evaluation of spinal tumor patient condition

All decisions related to the choice of management for the patient are based on the patient's ability to tolerate an appropriate procedure, which, in particular, depends on dissemination of the tumor process, its histological type, and concomitant somatic pathology. Since the patient's life span is directly related to the histological tumor type, the optimal amount of surgery should be chosen in cooperation with the oncologist. Non-small cell lung cancer, colon cancer, and carcinomas with unspecified primary localization have a mean survival rate of about 4 months since the time of surgery [39]; aggressive interventions that may require long recovery are not recommended in these patients. If concomitant somatic pathology excludes surgical intervention, radiation and medical therapeutic means are recommended for use even at the late stages of cancer.

Table 3 presents a NOMS-based algorithm for making a tactical decision.

Conclusion

In emergency situations, a specialist lacking oncological background should make tactical decisions based on analysis of simple and clear signs. Regarding neoplastic spinal lesions, the NOMS strategy appears to be the essential analytical tool, application of which enables eliminating an unreasonably prolonged therapeutic pause and choosing the treatment tactics that best suits the patient's interests.

The study had no sponsorship. The authors declare no conflict of interest.

Table 2
SINS scale for assessing spinal instability due to tumor lesions [11, 12
CINC

SINS component	Score		
Location:			
− junctional areas: occipital bone − C2, C7−T2, T11−L1, L5−S1;			
- mobile spine: C3-C6, L2-L4;			
- semirigid area: T3-T10;	1		
– rigid area: S2–S5	0		
Pain is reduced in a lying position, and/or pain is associated with movement or with			
load on the spine:			
– yes;	3		
no (occasional pain, but not mechanical);	1		
— pain-free lesion	0		
Bone lesion:			
- lytic;	2		
- mixed;	1		
- blastic	0		
Spinal alignment:			
- subluxation, translation;	4		
− de novo deformity (kyphotic/scoliotic);			
— normal alignment	0		
Vertebral body collapse:			
-> 50 %;	3		
-< 50 %;	2		
— no collapse with ≥ 50 % body involved;	1		
— none of the above	0		
Posterolateral involvement of spinal elements (joints, pedicles, or costovertebral			
joint injury or replacement with tumor):			
- bilateral;			
- unilateral;			
— none of the above			

Table 3

NOMS algorithm

Neurological	Oncological	Mechanical	Systemic	Decision making
criteria (N)	criteria (O)	criteria (M)	criteria (S)	
Low-grade	Radiosensitive	Stable	_	cEBRT
ESCC + no	Radiosensitive	Unstable	_	$Stabilization \rightarrow cEBRT$
myelopathy	Radioresistant	Stable	_	SSRS
	Radioresistant	Unstable	_	$Stabilization \rightarrow SRS$
High-grade	Radiosensitive	Stable	_	cEBRT
$ESCC \pm myelopathy$	Radiosensitive	Unstable	_	$Stabilization \rightarrow cEBRT$
	Radiosensitive	Stable	Can tolerate surgery	Decompression/
				$stabilization \rightarrow SRS$
	Radioresistant	Stable	Can not tolerate surgery	cEBRT
	Radioresistant	Unstable	Can tolerate surgery	Decompression/
				stabilization $\rightarrow SRS$
	Radioresistant	Unstable	Can not tolerate surgery	$Stabilization \rightarrow cEBRT$

cEBRT (conventional external beam radiation therapy), ESCC (epidural spinal cord compression), SRS (stereotactic radiosurgery), MAS (minimal access surgeries), SLITT (spinal laser interstitial thermotherapy).

 $Low-grade\ ESCC-0\ or\ 1\ according\ to\ the\ SOSG\ classification; high-grade\ ESCC-2\ and\ 3\ according\ to\ the\ SOSG\ classification.$

The term "decompression" includes open decompression, MAS, and SLITT.

The term "stabilization" includes percutaneous vertebroplasty, minimally invasive transpedicular stabilization, and open stabilization.

In patients with severe systemic concomitant diseases that limit the use of open surgery, stabilization may be limited to percutaneous vertebroplasty and minimally invasive transpedicular stabilization with screw augmentation, if necessary [22].

References

- Mushkin AYu, Malchenko OV. Oncological Vertebrology: Selected Issues. Novosibirsk. 2012. In Russian.
- Shcherbuk YA, Bagnenko SF, Dulaev AK, Dulaeva NM, Alikov ZY. Organization
 of specialized medical care to patients with urgent surgical pathology of the spine. Hir.
 Pozvonoc. 2011;(2):67–73. In Russian. DOI: https://doi.org/10.14531/ss2011.2.67-73.
- Bailar JC 3rd, Gornik HL. Cancer undefeated. N Eng J Med. 1997;336:1569–1574.
 DOI: 10.1056/NEIM199705293362206.
- Bartolozzi B, Nozzoli C, Pandolfo C, Antonioli E, Guizzardi G, Morichi R, Bosi A. Percutaneous vertebroplasty and kyphoplasty in patients with multiple myeloma. Eur J Haematol. 2006;76:180–181. DOI: 10.1111/j.1600-0609.2005.00573.x.
- Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, Vrionis FD, Yamada Y, Gerszten PC, Kuklo TR. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg: Spine. 2010;13:324–328. DOI: 10.3171/2010.3.SPINE09459.
- Bilsky MH, Lis E, Raizer J, Lee H, Boland P. The diagnosis and treatment of metastatic spinal tumor. Oncologist. 1999;4:459–469.
- Burton AW, Mendel E. Vertebroplasty and kyphoplasty. Pain Physician. 2003;6:335-341.
- Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25:1423–1436. DOI: 10.1200/ ICO.2006.09.5281.
- Cooper PR, Errico TJ, Martin R, Crawford B, DiBartolo T. A systematic approach to spinal reconstruction after anterior decompression for neoplastic disease of the thoracic and lumbar spine. Neurosurgery. 1993;32:1–8. DOI: 10.1227/00006123-199301000-00001.
- Findlay GF. Adverse effects of the management of malignant spinal cord compression.
 J Neurol Neurosurg Psychiatry. 1984;47:761–768.
- 11. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, Harrop JS, Fehlings MG, Boriani S, Chou D, Schmidt MH, Polly DW, Biagini R, Burch S, Dekutoski MB, Ganju A, Gerszten PC, Gokaslan ZL, Groff MW, Liebsch NJ, Mendel E, Okuno SH, Patel S, Rhines LD, Rose PS, Sciubba DM, Sundaresan N, Tomita K, Varga PP, Vialle LR, Vrionis FD, Yamada Y, Fourney DR. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine. 2010;35:E1221–E1229. DOI: 10.1097/BRS.0b013e3181e16ae2.
- 12. Fourney DR, Frangou EM, Ryken TC, Dipaola CP, Shaffrey CI, Berven SH, Bilsky MH, Harrop JS, Fehlings MG, Boriani S, Chou D, Schmidt MH, Polly DW, Biagini R, Burch S, Dekutoski MB, Ganju A, Gerszten PC, Gokaslan ZL, Groff MW, Liebsch NJ, Mendel E, Okuno SH, Patel S, Rhines LD, Rose PS, Sciubba DM, Sundaresan N, Tomita K, Varga PP, Vialle LR, Vrionis FD, Yamada Y, Fisher CG. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29:3072–3077. DOI: 10.1200/JCO.2010.34.3897.
- Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine. 2007;32:193–199. DOI: 10.1097/01.brs.0000251863.76595.a2.
- Gerszten PC, Burton SA, Ozhasoglu C, Vogel WJ, Welch WC, Baar J, Friedland DM. Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J Neurosurg: Spine. 2005;3:288–295. DOI: 10.3171/spi.2005.3.4.0288.
- Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine. 2009;34:S78–S92. DOI: 10.1097/BRS.0b013e3181b8b6f5.

- Gokaslan ZL, York JE, Walsh GL, McCutcheon IE, Lang FF, Putnam JB Jr, Wildrick DM, Swisher SG. Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurg. 1998;89:599–609. DOI: 10.3171/jns.1998.89.4.0599.
- Hatrick NC, Lucas JD, Timothy AR, Smith MA. The surgical treatment of metastatic disease of the spine. Radiother Oncol. 2000;56:335–339.
- Heary RF, Bono CM. Metastatic spinal tumors. Neurosurg Focus. 2001;11:e1. DOI: 10.3171/foc.2001.11.6.2.
- Hentschel SJ, Burton AW, Fourney DR, Rhines LD, Mendel E. Percutaneous vertebroplasty and kyphoplasty performed at a cancer center: refuting proposed contraindications. J Neurosurg: Spine. 2005;2:436–440.
- Ibrahim A, Crockard A, Antonietti P, Boriani S, Bunger C, Gasbarrini A, Grejs A, Harms J, Kawahara N, Mazel C, Melcher R, Tomita K. Does spinal surgery improve the quality of life for those with extradural (spinal) osseous metastases? An international multicenter prospective observational study of 223 patients. J Neurosurg: Spine. 2008;8:271–278.
- Jacobs WB, Perrin RG. Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus. 2001;11:e10.
- Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, Bilsky MH. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18:744–751. DOI: 10.1634/theoncologist.2012-029.
- Lovelock DM, Zhang Z, Jackson A, Keam J, Bekelman J, Bilsky M, Lis E, Yamada Y. Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases. Int J Radiat Oncol Biol Phys. 2010;77:1282–1287. DOI: 10.1016/j.ijrobp.2009.10.003.
- Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys. 1995;32:959–967. DOI: 10.1016/0360-3016(95)00572-G.
- Mazel C, Balabaud L, Bennis S, Hansen S. Cervical and thoracic spine tumor management: surgical indications, techniques, and outcomes. Orthop Clin North Am. 2009;40:75–92. DOI: 10.1016/j.ocl.2008.09.008.
- Mendel E, Bourekas E, Gerszten P, Golan JD. Percutaneous techniques in the treatment of spine tumors: what are the diagnostic and therapeutic indications and outcomes? Spine. 2009;34:S93–S100. DOI: 10.1097/BRS.0b013e3181b77895.
- Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, Mohiuddin M, Young B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366:643–648. DOI: 10.1016/S0140-6736(05)66954-1.
- Rades D, Fehlauer F, Schulte R, Veninga T, Stalpers LJ, Basic H, Bajrovic A, Hoskin PJ, Tribius S, Wildfang I, Rudat V, Engenhart-Cabilic R, Karstens JH, Alberti W, Dunst J, Schild SE. Prognostic factors for local control and survival after radiotherapy of metastatic spinal cord compression. J Clin Oncol. 2006;24:3388-3393. DOI: 10.1200/JCO.2005.05.0542.
- Ryu S, Fang Yin F, Rock J, Zhu J, Chu A, Kagan E, Rogers L, Ajlouni M, Rosenblum M, Kim JH. Image guided and intensity modulated radiosurgery for patients with spinal metastasis. Cancer. 2003;97:2013–2018. DOI: 10.1002/cncr.11296.
- Ryu S, Rock J, Rosenblum M, Kim JH. Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurg. 2004;101 Suppl 3:402–405. DOI: 10.3171/ jns.2004.101.supplement 3.0402.
- 31. Sahgal A, Atenafu EG, Chao S, Al-Omair A, Boehling N, Balagamwala EH, Cunha M, Thibault I, Angelov L, Brown P, Suh J, Rhines LD, Fehlings MG, Chang E. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31:3426–3431. DOI: 10.1200/JCO.2013.50.1411.

- Sakaura H, Hosono N, Mukai Y, Ishii T, Yonenobu K, Yoshikawa H. Outcome
 of total en bloc spondylectomy for solitary metastasis of the thoracolumbar spine. J Spinal Disord Tech. 2004;17:297–300.
- Spinazze S, Caraceni A, Schrijvers D. Epidural spinal cord compression. Crit Rev Oncol Hematol. 2005;56:397–406. DOI: 10.1016/j.critrevonc.2005.04.005.
- Steinmetz MP, Mekhail A, Benzel EC. Management of metastatic tumors of the spine: strategies and operative indications. Neurosurg Focus. 2001;11:1–6.
- Sundaresan N, Digiacinto GV, Hughes JE, Cafferty M, Vallejo A. Treatment of neoplastic spinal cord compression: results of a prospective study. Neurosurgery. 1991:29:645–650.
- Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 2005;30:2186–2191.
- Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T. Surgical strategy for spinal metastases. Spine. 2001;26:298–306.
- Wai EK, Finkelstein JA, Tangente RP, Holden L, Chow E, Ford M, Yee A. Quality of life in surgical treatment of metastatic spine disease. Spine. 2003;28:508–512.
 DOI: 10.1097/00007632-200303010-00018.
- 39. Wang JC, Boland P, Mitra N, Yamada Y, Lis E, Stubblefield M, Bilsky MH. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg: Spine. 2004;1:287–298. DOI: 10.3171/spi.2004.1.3.0287.
- Weigel B, Maghsudi M, Neumann C, Kretschmer R, Muller FJ, Nerlich M. Surgical management of symptomatic spinal metastases. Postoperative outcome and quality of life. Spine. 1999;24:2240–2246.
- Wise JJ, Fischgrund JS, Herkowitz HN, Montgomery D, Kurz LT. Complication, survival rates, and risk factors of surgery for metastatic disease of the spine. Spine. 1999;24:1943–1951.

- 42. Yamada Y, Katsoulakis E, Laufer I, Lovelock M, Barzilai O, McLaughlin LA, Zhang Z, Schmitt AM, Higginson DS, Lis E, Zelefsky MJ, Mechalakos J, Bilsky MH. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus. 2017;42:E6. DOI: 10.3171/2016.9.FOCUS16369.
- Young RF, Post EM, King GA. Treatment of spinal epidural metastases: randomized prospective comparison of laminectomy and radiotherapy. J Neurosurg. 1980;53:741– 748. DOI: 10.3171/jns.1980.53.6.0741.

Address correspondence to:

Mushkin Mikhail Aleksandrovich Pavlov First Saint-Petersburg State Medical University, Lva Tolstogo str., 6–8, St. Petersburg, 197022, Russia, mikhail_mushkin@mail.ru

Received 18.04.2018 Review completed 26.04.2018 Passed for printing 10.05.2018

Mikhail Aleksandrovich Mushkin, orthopedic traumatologist, teaching assistance, Department of traumatolofy and orthopaedics, Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str., 6–8, St. Petersburg 194064, Russia, mikhail_mushkin@mail.ru;

Alexandr Kaisinovich Dulaev, DMSc, Prof., Head of the Urban Center for Emergency Surgery of the Spine, St. Petersburg I.I. Dzbanelidze Research Institute of Emergency Medicine, Budapeshtskaya str., 3a, St. Petersburg, 192242, Russia; Head of the Department of traumatology and orthopedics, Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str., 6–8, St. Petersburg, 194064, Russia, akdulaev@gmail.com;

Aleksandr Yuryevich Musbkin, DMSc, Prof., chief researcher, St. Petersburg Research Institute of Phthisiopulmonology, Politekhnicheskaya str., 32, St. Petersburg, 194064, Russia, aymusbkin@mail.ru.

