Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

3D CHONDROGRAFT: BONE DEFECT REPLACEMENT MATERIAL

https://doi.org/10.14531/ss2012.4.65-72

Abstract

Objective. To analyze histogenetic potencies of the 3D chondrograft for correction of artifactual vertebral body lesion.

Material and Methods. Osteogenic potencies of the 3D chondrograft isolated from minipig primary cartilage were studied in canine experimental model of artificial vertebral body defect.

Results. Tissue specificity of 3D chondrograft was confirmed by the presence of aggrecan, chondroitin sulfates, keratin sulfates, and type I and II collagen in cells and in the matrix, as well as by the expression of aggrecan, biglycan, and lumikan genes, and ultrastructural arrangement of cells and the matrix (chondrometabolic barrier). Transformation of chondrograft occupying the space of bone defect led to complete restoration of vertebral bone structure followed by the formation of organo-specific bone tissue. Restoration of bone tissue was promoted by chondrograft in the way of enhonral osteogenesis, both embryonic and regenerative.

Conclusion. High reparative potencies of chondrograft suggest its feasibility in correction of pathologies caused by chondroosteogenesis disorders and dystrophic changes in the osteoarticular system.

About the Authors

Alla M. Zaidman
Novosibirsk Research Institute of Traumatolofy and Orthopaedics
Russian Federation


Elena Igorevna Schelkunova
Novosibirsk Research Institute of Traumatolofy and Orthopaedics
Russian Federation


Elena Leonidovna Strokova
Novosibirsk Research Institute of Traumatolofy and Orthopaedics
Russian Federation


Anastasia Viktorovna Korel
Novosibirsk Research Institute of Traumatolofy and Orthopaedics
Russian Federation


Shukhrat Numanzhonovich Rakhmatillaev
Novosibirsk Research Institute of Traumatolofy and Orthopaedics
Russian Federation


Aleksandr Igorevich Shevchenko
The Institute of Cytology and Genetics, SB RAS, Novosibirsk
Russian Federation


References

1. Деев Р.В., Исаев А.А., Кочиш А.Ю. и др. Клеточные технологии в травматологии и ортопедии: пути развития // Клеточная трансплантология и тканевая инженерия. 2007. № 4. С. 18–30.

2. Деев Р.В., Цупкина Н.В., Бозо И.Я. и др. Тканеинженерный эквивалент кости: методологические основы создания и биологические свойства // Клеточная трансплантология и тканевая инженерия. 2011. № 1. С. 62–67.

3. Зайдман А.М. Идиопатический сколиоз. Новосибирск, 1994.

4. Пат. № 2392973 Российская Федерация. Способ получения трехмерного хондротрансплантата / Зайдман А.М., Ким И.И., Садовой М.А.; заявл. 28.01.2008; опубл. 27.06.2010, Бюл. № 18.

5. Серов В.В., Шехтер А.Б. Соединительная ткань. М., 1981.

6. Цивьян Я.Л., Зайдман А.М. Морфогенез сколиоза. Новосибирск, 1978.

7. Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 2002; 111: 61–73.


Review

For citations:


Zaidman A.M., Schelkunova E.I., Strokova E.L., Korel A.V., Rakhmatillaev Sh.N., Shevchenko A.I. 3D CHONDROGRAFT: BONE DEFECT REPLACEMENT MATERIAL. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2012;(4):65-72. (In Russ.) https://doi.org/10.14531/ss2012.4.65-72



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)