MODELING OF THE SPINE COMPENSATORY RESPONSE TO DEFORMITY
https://doi.org/10.14531/ss2018.3.85-91
Abstract
Objective. To analyze mathematical model of the efficiency of the compensatory mechanism of the deformed spine.
Material and Methods. The developed basic kinematic model of the spine was used. The restoration of the position of the projection of the general center of mass (GCM) was mathematically modeled, and mechanogenesis of the spinal deformity and possibility of its compensation were evaluated. To assess the reliability of the mathematical model, spinal skiagrams taken from patients with clinically confirmed pathology and sagittal imbalance were used.
Results. On the basis of quantitative characteristics of the primary spine deformity of a certain clinical case and using the developed algorithm, it is possible to create a model of both a primary deformity and a compensatory response from intact segments of the spine taking into account the influencing factors. This makes it possible to use the proposed kinematic model in scientific research on predicting the course of various types of spinal deformities.
Conclusion. The proposed algorithms simulating the development of spinal deformities based on the restoration of the position of the GCM projection reflect their mechanogenesis and can be used to model various pathological conditions of the spine. A complete correction of the deformity does not mean a complete cure, since the required spinal fusion creates a new, prognostically less significant, but pathological situation.
About the Authors
A. V. KrutkoRussian Federation
DMSc, Head of Neurosurgery Department
Frunze str., 17, Novosibirsk, 630091, Russia
A. V. Gladkov
Russian Federation
DMSc, senior researcher
Frunze str., 17, Novosibirsk, 630091, Russia
V. V. Komissarov
Russian Federation
PhD in Physics and Mathematics, Associate Professor of the Department of Higher Mathematics
Karl Marks Prospekt, 20, Novosibirsk, 630073, Russia
N. V. Komissarova
Russian Federation
senior lecturer of the Department of Higher Mathematics
Karl Marks Prospekt, 20, Novosibirsk, 630073, Russia
References
1. Гладков А.В., Комиссаров В.В. Прогностическая кинематическая модель позвоночника // Инновации в жизнь. 2016. № 3(18). С. 63-77.
2. Гладков А.В., Комиссаров В.В. Адекватность прогностической модели позвоночника // Инновации в жизнь. 2017. № 4(19). С. 63-73.
3. Скворцов Д.В. Диагностика двигательной патологии инструментальными методами: анализ походки, стабилометрия. М., 2007.
4. Amar J. The Human Motor. New York, 1920.
5. Barrey C, Roussouly P, Le Huec J, D'Acunzi G, Perrin G. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J. 2013;22 Suppl 6:S834-S841. DOI: 10.1007/s00586-013-3030-z.
6. Duval-Beaupere G, Boisaubert B, Hecquet J, Legaue J, Marty C, Montigny JP. Sagittal profile of normal spine changes in spondylolisthesis. In: Harms J., Sturz H., eds. Severe Spondylolisthesis. Steinkopff, Heidelberg, 2002:21-31. DOI: 10.1007/978-3-642-57525-9_3.
7. Harless E. Die statichen Momente der menschlichen Gliedmassen. Abh. Math.-Phys. Kl., K. Bayer.Akad.Wiss. 1860;8:69-96, 257-294.
8. Ilharreborde B, Dubousset J, Le Huec JC. Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J. 2014;23 Suppl 4:397-405. DOI: 10.1007/s00586-014-3334-7.
9. Kulwicki PV, Schlei EJ, Vergamini PL. Weightless man: self-rotation techniques. In: Ohio Technical Report No. TDR 62-129. Wright-Patterson Air Force Base, 1962:62-129.
10. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine. 2009;34:E599-E606. DOI: 10.1097/BRS.0b013e3181aad219.
11. Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J. 2011;20 Suppl 5:564-571. DOI: 10.1007/s00586-011-1940-1.
12. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 2005;30:346-353. DOI: 10.1097/01.brs.0000152379.54463.65.
13. Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J. The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine. 2006;31:E320-E325. DOI: 10.1097/01.brs.0000218263.58642.ff.
14. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M. Adult scoliosis: a quantitative radiographic and clinical analysis. Spine. 2002;27:387-392. DOI: 10.1097/00007632-200202150-00012.
15. Tanz SS. Motion of the lumbar spine; a roentgenologic study. Am J Roentgenol Radium Ther Nucl Med. 1953;69:399-412.
16. Vedantam R, Lenke LG, Bridwell KH, Linville DL, Blanke K. The effect of variation in arm position on sagittal spinal alignment. Spine. 2000;25:2204-2209.
17. Whitsett CE. Some dynamic response characteristics of weightless man. AMRL Technical Report 63-18, Wright-Patterson Air Force Base, Ohio, 1963:63-118.
Review
For citations:
Krutko A.V., Gladkov A.V., Komissarov V.V., Komissarova N.V. MODELING OF THE SPINE COMPENSATORY RESPONSE TO DEFORMITY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2018;15(3):85-91. https://doi.org/10.14531/ss2018.3.85-91