Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data

https://doi.org/10.14531/ss2019.3.8-16

Abstract

Material  and Methods. The  study design is a meta-analysis of publications with levels  1a, b, c, and  2a evidence and  a level A recommendations. An electronic search was conducted in the  PubMed, Web of Science, Scopus, Cochrane Library, CrossRef, AO Spine, Eurospine, ResearchGate, eLIBRARY, and MEDLINE databases, and in references of key articles. Inclusion criteria were systematic reviews, randomized controlled studies, multicenter cohort studies with a level 1a, b, c, and 2a evidence and level A recommendations for adult patients with long-term sequelae of spinal cord  injury (more than 4 months after injury). Exclusion criteria were  topic articles, clinical  cases, observations, cohort uncontrolled studies, experimental articles, reports, articles with levels 2b, c, 3a, b, 4, and 5 evidence and level B, C, and D recommendations, pediatric patients, early period after spinal cord injury (less than 4 months), and non-traumatic lesions of the spinal cord.

Results. The  search returned 108 articles with publication date within 1997–2019. The  inclusion criteria was  met  by 65 publications: 33 systematic reviews, 12 randomized controlled studies, 19 multicenter studies; and one open  prospective study was included in the  review due  to the  particular treatment method used. The  greatest evidence base  for the  rehabilitation of patients in the  long-term period after spinal cord  injury is presented for physical methods of rehabilitation. The  most effective are locomotor training to develop skills  of movement. Auxiliary verticalization and robotic devices are needed to restore and improve proprioceptive innervation. In case of violation of the  spinal tracts, the  restoration of motor functions occurs due  to the  activation of supraspinal interneuronal connections. Epidural electrical stimulation of the  lumbar thickening of the  spinal cord  activates a generator of voluntary movement of the  limbs  and,  in combination with training of proprioceptive sensitivity, leads to a regression of movement disorders. The  constant use  of electrostimulation blocks proprioceptive sensitivity and inhibits the  recovery of spinal conductivity. Parameters of clinical  application are not  defined for areas of regenerative medicine.

Conclusion. The  main problem in rehabilitation of patients in late  period after spinal cord injury is the lack of a unified concept, developed strategies of rehabilitation technologies, and criteria for assessment of the  initial status and treatment efficiency.

About the Authors

O. G. Prudnikova
Scientific Center for Restorative Traumatology and Orthopaedics Russian Ilizarov
Russian Federation

Oksana  Germanovna Prudnikova - DMSc, senior researcher at scientific-clinical laboratory of  axial  skeleton pathology and  neurosurgery, head of  trauma-orthopaedic department No. 10.

M. Ulyanovoy str., 6, Kurgan, 640014.



A. A. Kachesova
Scientific Center for Restorative Traumatology and Orthopaedics Russian Ilizarov
Russian Federation

Anastasia  Anatolyevna Kachesova - neurologist of the Clinic of Spinal Pathology and  Rare Diseases.

M. Ulyanovoy str., 6, Kurgan, 640014.



S. O. Ryabykh
Scientific Center for Restorative Traumatology and Orthopaedics Russian Ilizarov
Russian Federation

Sergey Olegovich Ryabykh - MD, Head of Clinic of Spinal Pathology and  Rare Diseases.

M. Ulyanovoy str., 6, Kurgan, 640014.



References

1. Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009). [Electronic resource]. URL: http://www.cebm.netoxford-centre-evidence-based-medicine-levels-evidence-march-2009.

2. Nowrouzi B, Assan-Lebbe A, Sharma B, Casole J, Nowrouzi-Kia B. Spinal cord injury: a review of the most-cited publications. Eur Spine J. 2017;26:28–39. DOI: 10.1007/s00586-016-4669-z.

3. Liu X, Liu N, Zhou M, Lu Y, Li F. Bibliometric analysis of global research on the rehabilitation of spinal cord injury in the past two decades. Ther Clin Risk Manag. 2018;15:1–14. DOI: 10.2147/TCRM.S163881.

4. Burns AS, Marino RJ, Kalsi-Ryan S, Middleton JW, Tetreault LA, Dettori JR, Mihalovich KE, Fehlings MG. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 2017;7(3 Suppl):175S–194S. DOI: 10.1177/2192568217703084.

5. Amelina OA. Spinal cord injury. Clinical neurology with the basics of medical and social expertise, ed. by A.Yu. Makarov. St. Petersburg, 1998:232–248. In Russian.

6. Mazwi NL, Adeletti K, Hirschberg RE. Traumatic spinal cord injury: recovery, rehabilitation, and prognosis. Curr Trauma Rep. 2015;1:182–192. DOI: 10.1007/ s40719-015-0023-x.

7. Maharaj MM, Hogan JA, Phan K, Mobbs RJ. The role of specialist units to provide focused care and complication avoidance following traumatic spinal cord injury: a systematic review. Eur Spine J. 2016;25:1813–1820. DOI: 10.1007/s00586-016-4545-x.

8. Whiteneck G, Gassaway J, Dijkers M, Backus D, Charlifue S, Chen D, Hammond F, Hsieh CH, Smout RJ. The SCIRehab project: treatment time spent in SCI rehabilitation. Inpatient treatment time across disciplines in spinal cord injury rehabilitation. J Spinal Cord Med. 2011;34:133–148. DOI: 10.1179/107902611X12971826988011.

9. Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves DE, Jha A, Jones L, Mulcahey MJ, Krassioukov A. Reference for the 2011 revision of the international Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med. 2001;34:547–554. DOI: 10.1179/107902611X13186000420242.

10. Van Langeveld SAHB, Post MWM, van Asbeck FWA, Postma K, Тen Dam D, Pons K. Development of a classification of physical, occupational, and sports therapy interventions to document mobility and self-care in spinal cord injury rehabilitation. J Neurol Phys Ther. 2008;32:2–7. DOI: 10.1097/NPT.0b013e3181663533.

11. Whyte J, Hart T. It’s more than a black box; it’s a Russian doll: defining rehabilitation treatments. Am J Phys Med Rehabil. 2003;82:639–652. DOI: 10.1097/01.PHM.0000078200.61840.2D.

12. Rapidi CA, Tederko P, Moslavac S, Popa D, Branco CA, Kiekens C, Varela Donoso N, Christodoulou N. Evidence based position paper on Physical and Rehabilitation Medicine (PRM) professional practice for persons with spinal cord injury. The European PRM position (UEMS PRM Section). Eur J Physi Rehabil Med. 2018;54:797–807. DOI: 10.23736/S1973-9087.18.05374-1.

13. Teeter L, Gassaway J, Taylor S, LaBarbera J, McDowell S, Backus D, Zanca JM, Natale A, Cabrera J, Smout RJ, Kreider SE. Whiteneck G. Relationship of physical therapy inpatient rehabilitation interventions and patient characteristics to outcomes following spinal cord injury: the SCIRehab project. J Spinal Cord Med. 2012;35:503–526. DOI: 10.1179/2045772312y.0000000058.

14. Abdul-Sattar AB. Predictors of functional outcome in patients with traumatic spinal cord injury after inpatient rehabilitation: in Saudi Arabia. Neuro Rehabilitation. 2014;35:341–347. DOI: 10.3233/NRE-141111.

15. Scivoletto G, Morganti B, Molinari M. Early versus delayed inpatient spinal cord injury rehabilitation: an Italian study. Arch Phys Med Rehabil. 2005;86:512–516. DOI: 10.1016/j.apmr.2004.05.021.

16. Sumida M, Fujimoto M, Tokuhiro A, Tominaga T, Magara A, Uchida R. Early rehabilitation effect for traumatic spinal cord injury. Arch Phys Med Rehabil. 2001;82:391–395. DOI: 10.1053/apmr.2001.19780.

17. Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S. Activity-based therapy for recovery of walking in chronic spinal cord injury: Results from a secondary analysis to determine responsiveness to therapy. Arch Phys Med Rehabil. 2014;95:2247–2252. DOI: 10.1016/j.apmr.2014.07.401.

18. Horn SD, Smout RJ, DeJong G, Dijkers MP, Hsieh CH., Lammertse D, Whiteneck GG. Association of various comorbidity measures with spinal cord injury rehabilitation outcomes. Arch Phys Med Rehabil. 2013;94(4 Suppl):S75–S86. DOI: 10.1016/j.apmr.2012.10.036.

19. Tian W, Hsieh CH, DeJong G, Backus D, Groah S, Ballard PH. Role of body weight in therapy participation and rehabilitation outcomes among individuals with traumatic spinal cord injury. Arch Phys Med Rehabil. 2013;94(4 suppl):S125–S136. DOI: 10.1016/j.apmr.2012.10.039.

20. Hyun JK, Kim HW. Clinical and experimental advances in regeneration of spinal cord injury. J Tissue Eng. 2010;2010:650857. DOI: 10.4061/2010/650857.

21. Huang H, Sun T, Chen L, Moviglia G, Chernykh E, von Wild K, Deda H, Kang KS, Kumar A, Jeon SR, Zhang S, Brunelli G, Bohbot A, Soler MD, Li J, Cristante AF, Xi H, Onose G, Kern H, Carraro U, Saberi H, Sharma HS, Sharma A, He X, Muresanu D, Feng S, Otom A, Wang D, Iwatsu K, Lu J, Al-Zoubi A. Consensus of clinical neurorestorative progress in patients with complete chronic spinal cord injury. Cell Transplant. 2014;23 Suppl 1:S5–S17. DOI: 10.3727/096368914X684952.

22. Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM. Translational regenerative therapies for chronic spinal cord injury. Int J Mol Sci. 2018;19.pii:E1776. DOI: 10.3390/ijms19061776.

23. Ko CC, Tu TH, Wu JC, Huang WC, Tsai YA, Huang SF, Huang HC, Cheng H. Functional improvement in chronic human spinal cord injury: Four years after acidic fibroblast growth factor. Scientific Reports. 2018;8:12691. DOI: 10.1038/s41598-018-31083-4.

24. Fisahn C, Aach M, Jansen O, Moisi M, Mayadev A, Pagarigan KT, Dettori JR, Schildhauer TA. The effectiveness and safety of exoskeletons as assistive and rehabilitation devices in the treatment of neurologic gait disorders in patients with spinal cord injury: a systematic review. Global Spine J. 2016;6:822–841. DOI: 10.1055/s-0036-1593805.

25. Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017;55:722–729. DOI: 10.1038/sc.2017.31.

26. Hayes S, James Wilcox CR, Forbes White HS, Vanicek N. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review. J Spinal Cord Med. 2018;41:1–15. DOI: 10.1080/10790268.2018.1426236.

27. Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42:520–526. DOI: 10.2340/16501977-0538.

28. Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. Robot-assisted training for people with spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2017;98:2320–2331.e12. DOI: 10.1016/j.apmr.2017.05.015.

29. Fisahn C, Aach M, Jansen O, Moisi M, Mayadev A, Pagarigan KT, Dettori JR, Schildhauer TA. The effectiveness and safety of exoskeletons as assistive and rehabilitation devices in the treatment of neurologic gait disorders in patients with spinal cord injury: a systematic review. Global Spine J 2016;6:822–841. DOI: 10.1055/s-0036-1593805.

30. Galea MP, Dunlop SA, Davis GM, Nunn A, Geraghty T, Hsueh YS, Churilov L. Intensive exercise program after spinal cord injury (“Full-On”): study protocol for a randomized controlled trial. Тrials. 2013;14:291. DOI: 10.1186/1745-6215-14-291.

31. Nam KY, Kim HJ, Kwon BS, Park JW, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14:24. DOI: 10.1186/s12984-017-0232-3.

32. Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair. 2007;21:25–35. DOI: 10.1177/1545968306295556.

33. Lucareli PR, Lima MO, Lima FP, de Almeida JG, Brech GC, D’Andrea Greve JM. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Spinal Cord. 2011;49:1001–1007. DOI: 10.1038/sc.2011.37.

34. Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, Gorassini M. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014;28:314–324. DOI: 10.1177/1545968313508473.

35. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91:48–60. DOI: 10.2522/ptj.20090359.

36. McDonald JV, Becker D, Sadowsky CL, Jane JA, Conturo TE, Schultz LM. Late recovery following spinal cord injury. Case report and review of the literature. J Neurosurg. 2002;97(2 Suppl):252–265. DOI: 10.3171/spi.2002.97.2.0252.

37. Boswell-Ruys CL, Harvey LA, Barker JJ, Ben M, Middleton JW, Lord SR. Training unsupported sitting in people with chronic spinal cord injuries: a randomized controlled trial. Spinal Cord. 2010;48:138–143. DOI: 10.1038/sc.2009.88.

38. Frigon A, Rossignol S. Functional plasticity following spinal cord lesions. Prog Brain Res. 2006;157:231–260. DOI: 10.1016/s0079-6123(06)57016-5.

39. Bennett DJ, Li Y, Harvey PJ, Gorassini M. Evidence for plateau potentials in tail motoneurons of a wake chronic spinal rats with spasticity. J Neurophysiol. 2001;86:1972–1982. DOI: 10.1152/jn.2001.86.4.1972.

40. Johnson MD, Heckman CJ. Gain control mechanisms in spinal motoneurons. Front Neural Circuits. 2014;8:81. DOI: 10.3389/fncir.2014.00081.

41. Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, Bloch J, Micera S, Capogrosso M, Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018;21:1728–1741. DOI: 10.1038/s41593-018-0262-6.

42. Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol. 2015;113:834–842. DOI: 10.1152/jn.00609.2014.

43. Gerasimenko Y, Gorodnichev R, Moshonkina T, Sayenko D, Gad P, Edgerton VR. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58:225–231. DOI: 10.1016/j.rehab.2015.05.003.

44. Calvert JS, Grahn PJ, Zhao KD, Lee KH. Emergence of epidural electrical stimulation to facilitate sensorimotor network functionality after spinal cord injury. Neuromodulation. 2019;22:244–252. DOI: 10.1111/ner.12938.

45. Musienko P, Heutschi J, Friedli L, van den Brand R, Courtine G. Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol. 2012;235:100–109. DOI: 10.1016/j.expneurol.2011.08.025.

46. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377:1938–1947. DOI: 10.1016/S0140-6736(11)60547-3.

47. Young W. Electrical stimulation and motor recovery. Cell Transplant. 2015;24:429–446. DOI: 10.3727/096368915X686904.

48. Calvert JS, Grahn PJ, Strommen JA, Lavrov IA, Beck LA, Gill ML, Linde MB, Brown DA, Van Straaten MJ, Veith DD, Lopez C, Sayenko DG, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Electrophysiological guidance of epidural electrode array implantation over the human lumbosacral spinal cord to enable motor function after chronic paralysis. J Neurotrauma. 2019;36:1451–1460. DOI: 10.1089/neu.2018.5921.

49. Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol. 2018;160:64–81. DOI: j.pneurobio.2017.10.004.

50. Barolat G. Epidural spinal cord stimulation anatomical and electrical properties of the intraspinal structures relevant to spinal cord stimulation and clinical correlations. Neuromodulation. 1998;1:63–71. DOI: 10.1111/j.1525-1403.1998.tb00019.x.

51. Wagner FB, Mignardot JB, Goff-Mignardot CJL, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. DOI: 10.1038/s41586-018-0649-2.

52. Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006;14:14–23. DOI: 10.1109/TNSRE.2005.862694.

53. Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J. 2008;17:1256–1269. DOI: 10.1007/s00586-008-0729-3.

54. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff GG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bezard E, Micera S, Courtine G. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med. 2016;22:138–145. DOI: 10.1038/ nm.4025.

55. Popovic MR, Kapadia N, Zivanovic V, Furlan JC, Craven BC, McGillivray C. Functional electrical stimulation therapy of voluntary grasping versus only conventional rehabilitation for patients with subacute incomplete tetraplegia: a randomized clinical trial. Neurorehabil Neural Repair. 2011;25:433–442. DOI: 10.1177/1545968310392924.

56. Shah PK, Lavrov I. Spinal epidural stimulation strategies: clinical implications of locomotor studies in spinal rats. Neuroscientist. 2017;23:664–680. DOI: 10.1177/1073858417699554.

57. De Andres J, Reina MA, Hernandez-Garcia JM, Carrera A, Oliva A, Prats-Galino A. Role of spinal anatomical structures for neuromodulation. Region Anesth Pain M. 2011;36:E130–Е137.

58. Moreno-Duarte I, Morse LR, Alam M, Bikson M, Zafonte R, Fregni F. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. NeuroImage. 2013;85 Pt 3:1003–1013. DOI: 10.1016/j.neuroimage.2013.05.097.


Review

For citations:


Prudnikova O.G., Kachesova A.A., Ryabykh S.O. Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2019;16(3):8-16. https://doi.org/10.14531/ss2019.3.8-16



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)