Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Application of three-level navigation template in surgery for hemivertebrae in adolescents

https://doi.org/10.14531/ss2020.1.54-60

Abstract

Objective. To assess efficacy and safety of using a three-level navigation template in the surgical treatment of congenital spinal deformities.
Material and Methods. Three-level navigation templates were used in surgical treatment of four consecutively operated 10–17-year-old patients with congenital scoliosis associated with thoracic hemivertebrae. The correctness of screw position was evaluated according to CT data using a 2-mm increment method: class 0 – intraosseous screw position; class 1 – the screw extends beyond the pedicle cortex by less than 2 mm; class 2 – by 2–4 mm; and class 3 – by more than 4 mm. Preoperative DICOM data were processed with free software. The model of target zone and navigation template were 3D printed and used in surgery.
Results. Four of 16 (25 %) pedicles were narrower than 4.35 mm and were estimated as difficult for implantation with a planned violation of the integrity of the endplate. Perforation of the outer cortical layer took place in all these cases, and screw position corresponded to class 2 only in pedicle width of 1.9 mm. In pedicles wider than 4.35 mm, 11 of 12 (91.7 %) screws were implanted intraosseously. One screw extended beyond the pedicle cortex by 0.8 mm (class 1).
Conclusion. Three-level navigation template can be considered as an effective means of positioning transpedicular screws in secondarily changed segments adjacent to anomalous one and confounding implantation. Free software is sufficient for preparing 3D-model of target zone and navigation template, and such a model is a highly informative reference object that is convenient to use during the operation. A navigation template made using 3D printing does not require the use of expensive equipment, which can make surgery for congenital scoliosis more accessible.

About the Authors

A. V. Kosulin
Saint-Petersburg State Pediatric Medical University
Russian Federation

Artem Vladimirovich Kosulin, assistant Professor, Department of Operative Surgery and Topographic Anatomy n.a. F.I. Valker

2 Litovskaya str., St. Petersburg, 194100



D. V. Elyakin
Saint-Petersburg State Pediatric Medical University
Russian Federation

Dmitry Viktorovich Elyakin, pediatric surgeon, Surgical Department No.2

2 Litovskaya str., St. Petersburg, 194100



L. A. Kornievskiy
Saint-Petersburg State Pediatric Medical University
Russian Federation

Leonid Aleksandrovich Kornievskiy, assistant professor, Department of Otorhinolaryngology

2 Litovskaya str., St. Petersburg, 194100



A. M. Darkovskaya
Saint-Petersburg State Pediatric Medical University
Russian Federation

Aleksandra Maksimovna Darkovskaya, student, Pediatric Faculty

2 Litovskaya str., St. Petersburg, 194100



I. A. Bulatova
Saint-Petersburg State Pediatric Medical University
Russian Federation

Irina Anatolyevna Bulatova, MD, PhD, associate professor, Department of Operative Surgery and Topographic Anatomy n.a. F.I. Valker

2 Litovskaya str., St. Petersburg, 194100



A. A. Pashko
Saint-Petersburg State Pediatric Medical University
Russian Federation

Anna Anatolyevna Pashko, MD, PhD, associate professor, Department of Operative Surgery and Topographic Anatomy n.a. F.I. Valker

2 Litovskaya str., St. Petersburg, 194100



References

1. Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017;3:433–443. DOI: 10.21037/jss.2017.09.01.

2. Aydin HE, Kaya I, Aydin N, Kizmazoglu C, Karakoc F, Yurt H, Husemoglu RB. Importance of three-dimensional modeling in cranioplasty. J Craniofac Surg. 2019;30:713–715. DOI: 10.1097/SCS.0000000000005121.

3. Filatova OO, Klimov AG, Seleznev BV. The usage of combination of tricalcium phosphate and polylactic acid as materials for 3D printing of alloplastic blocks. Pediatrician (St Petersburg). 2017;8(3):47–50. In Russian. DOI: 10.17816/PED8347-50.

4. Vlasova GV, Pavlov PV. Congenital middle ear cholesteatoma in children: retrospective analysis of 23 cases. Vestnik otorinolaringologii. 2017;82(S5):59–60. In Russian.

5. Zaharova ML, Pavlov PV. Сongenital larynx diseases in children. Russian otorhinolaryngology. 2017;86(1):31–35. In Russian.

6. Hamdan AL, Haddad G, Haydar A, Hamade R. The 3D printing of the paralyzed vocal fold: added value in injection laryngoplasty. J Voice. 2018;32:499–501. DOI: 10.1016/j.jvoice.2017.07.011.

7. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13:701–718. DOI: 10.1038/nrcardio.2016.170.

8. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15:115. DOI: 10.1186/s12938-016-0236-4.

9. Wu AM, Lin JL, Kwan KYH, Wang XY, Zhao J. 3D-printing techniques in spine surgery: the future prospects and current challenges. Expert Rev Med Devices. 2018;15:399–401. DOI: 10.1080/17434440.2018.1483234.

10. Ulrich EV, Mushkin AYu. Surgical Correction of Congenital Spinal Abnormalities in Children. St. Petersburg, 2007. In Russian.

11. Ratliff JK, Nasser R Hemivertebrae resection. In: Operative Techniques: Spine Surgery, 3rd ed. Ed. by Vaccar AR, Baron EM. Elsiever; 2018:398–402.

12. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015;24:990–1004. DOI: 10.1007/s00586-015-3853-x.

13. Burtsev AV, Pavlova OM, Ryabykh SO, Gubin AV. Computer 3D-modeling of patient-specific navigational template for cervical screw insertion. Hir. Pozvonoc. 2018;15(2):33–38. In Russian. DOI: 10.14531/ss2018.2.33-38.

14. Kovalenko RA, Rudenko VV, Kashin VA, Cherebillo VYu, Ptashnikov DA. Application of patient-specific 3D navigation templates for pedicle screw fixation of subaxial and upper thoracic vertebrae. Hir. Pozvonoc. 2019;16(2):35–41. In Russian. DOI: 10.14531/ss2019.2.35-41.

15. Deng T, Jiang M, Lei Q, Cai L, Chen L. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. Comput Assist Surg (Abingdon). 2016;21:143–149. DOI: 10.1080/24699322.2016.1236146.

16. Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine. 2015;40:E341–E348. DOI: 10.1097/BRS.0000000000000772.

17. Pu X, Luo C, Lu T, Yao S, Chen Q. Clinical application of atlantoaxial pedicle screw placement assisted by a modified 3d-printed navigation template. Clinics (Sao Paulo). 2018;73:e259. DOI: 10.6061/clinics/2018/e259.

18. Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1–C2 fixation. Spine. 2017;42:E340–E346. DOI: 10.1097/BRS.0000000000001807.

19. Wang F, Li CH, Liu ZB, Hua ZJ, He YJ, Liu J, Liu YX, Dang XQ. The effectiveness and safety of 3-dimensional printed composite guide plate for atlantoaxial pedicle screw: A retrospective study. Medicine (Baltimore). 2019;98:e13769. DOI: 10.1097/MD.0000000000013769.

20. Kokushin DN, Vissarionov SV, Baindurashvili AG, Ovechkina AV, Poznovich MS. Comparative analysis of pedicle screw placement in children with congenital scoliosis: freehand technique (in vivo) and guide templates (in vitro). Travmatologiya I Ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2018;24(4):53–63. In Russian. DOI: 10.21823/2311-2905-2018-24-4-53-63.

21. Kosulin AV, Elyakin DV, Lebedeva KD, Sukhomlinova AE, Kozlova EA, Orekhova AE. Navigation template for vertebral pedicle passage in transpedicular screw fixation. Pediatrician (St. Petersburg). 2019;10(3):45–50. In Russian. DOI: 10.17816/PED10345-50.

22. Cecchinato R, Berjano P, Zerbi A, Damilano M, Redaelli A, Lamartina C. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial. Eur Spine J. 2019;28:1712–1723. DOI: 10.1007/s00586-019-05978-3.

23. Garg B, Gupta M, Singh M, Kalyanasundaram D. Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: a comparative study. Spine J. 2019;19:56–64. DOI: 10.1016/j.spinee.2018.05.001.

24. Li X, Zhang Y, Zhang Q, Zhao C, Liu K. Clinical application of a drill guide template for pedicle screw placement in severe scoliosis. Acta Ortop Bras. 2017;25:67–70. DOI: 10.1590/1413-785220172502138828.

25. Lu T, Liu C, Dong J, Lu M, Li H, He X. Cervical screw placement using rapid prototyping drill templates for navigation: a literature review. Int J Comput Assist Radiol Surg. 2016;11:2231–2240. DOI: 10.1007/s11548-016-1414-3.

26. Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y, Zhang J, Hao D. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960–5968. DOI: 10.12659/MSM.905713.

27. Liu K, Zhang Q, Li X, Zhao C, Quan X, Zhao R, Chen Z, Li Y. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2016;26:1684–1689. DOI: 10.1007/s00586-016-4926-1.

28. Merc M, Drstvensek I, Vogrin M, Brajlih T, Friedrich T, Recnik G. Error rate of multi-level rapid prototyping trajectories for pedicle screw placement in lumbar and sacral spine. Chin J Traumatol. 2014;17:261–266.

29. Azimifar F, Hassani K, Saveh AH, Ghomsheh FT. A medium invasiveness multilevel patient’s specific template for pedicle screw placement in the scoliosis surgery. Biomed Eng Online. 2017;16:130. DOI: 10.1186/s12938-017-0421-0

30. Kovalenko RA, Kashin VA, Cherebillo VYu, Sharifov RM, Mironchuk RR, Akopov AL, Ivanov VA. Determination of optimal design of navigation templates for transpedicular implantation in the cervical and thoracic spine: results of cadaveric studies. Hir. Pozvonoc. 2019;16(4):77–83. In Russian. DOI: 10.14531/ss2019.4.77-83.


Review

For citations:


Kosulin A.V., Elyakin D.V., Kornievskiy L.A., Darkovskaya A.M., Bulatova I.A., Pashko A.A. Application of three-level navigation template in surgery for hemivertebrae in adolescents. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2020;17(1):54-60. https://doi.org/10.14531/ss2020.1.54-60



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)