Спонтанные костные блоки в хирургии ранних сколиозов: обзор литературы и анализ собственных данных
https://doi.org/10.14531/ss2024.4.6-17
Аннотация
В обзоре литературы рассмотрены вопросы патофизиологии спонтанных костных блоков, частоты их формирования, последствия развития спонтанных костных блоков у растущих детей, а также необходимость финального спондилодеза с использованием сегментарного инструментария и костной пластики при хирургии ранних сколиозов. Представлен собственный материал по оперативному лечению 131 пациента с ранними сколиозами различной этиологии с применением инструментария VEPTR, из которых 84 завершили цикл многоэтапного лечения. В ходе этапных дистракций и во время финального спондилодеза констатировали наличие спонтанных костных блоков различной локализации. В точках фиксации дистрагирующих стержней признаки спонтанных костных блоков отмечали в 100 % случаев. Не было ни одного случая блоков задних отделов позвонков на протяжении апикальной и параапикальных зон основной дуги искривления. У 21 больного выявлено 22 осложнения, которые потребовали повторного вмешательства после финального спондилодеза. Представленный опыт свидетельствует о том, что завершающий этап оперативного лечения больных с ранними сколиозами должен включать удаление стержней VEPTR, коррекцию деформации сегментарным инструментарием и спондилодез местной аутокостью на всем протяжении дуги искривления.
Об авторах
М. В. МихайловскийРоссия
д-р мед. наук, проф., главный научный сотрудник отдела детской и подростковой вертебрологии
В. A. Суздалов
Россия
канд. мед. наук, старший научный сотрудник отдела детской и подростковой вертебрологии
Список литературы
1. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44:591–610.
2. Marchetti PG, Faldini H. End fusions in the treatment of severe progressing or severe scoliosis in childhood or early adolescence. Orthop Trans.1978;2:271–275.
3. Moe JH, Winter R, Grobert L, Cummings H. Harrington instrumentation without fusion combined with the Milwaukee brace for difficult scoliosis problems in young children. Orthop Trans. 1979;3:59.
4. Luque ER. Paralytic scoliosis in growing children. Clin Orthop Relat Res. 1982;(163):202–209.
5. Eberle C. Failure of fixation after segmental instrumentation without arthrodesis in the management of paralytic scoliosis. J Bone Joint Surg Am. 1988;70:696–703. DOI: 10.2106/00004623-198870050-00009.
6. Hatem A, Elmorshidy EM, Elkot A, Hassan KM, El-Sharkawi M. Autofusion in growing rod surgery for early onset scoliosis: what do we know so far? SICOT-J. 2024;10:15. DOI: 10.1051/sicotj/2024011.
7. Menapace B, Jain V, Sturm P. Autofusion in early-onset scoliosis growing constructs: occurrence, risk factots, and impacts. Spine Deform. 2024;12:1155–1163. DOI: 10.1007/s43390-024-00853-8.
8. Cahill P, Marvil S, Cuddihy L, Schutt C, Idema J, Clements DH, Antonacci MD, Asghar J, Samdani AF, Betz RR. Autofusion in the immature spine treated with growing rods. Spine. 2010;35:E1199–E1203. DOI: 10.1097/BRS.0b013e3181e21b50.
9. Zivkovic V, Buchler P, Ovadia D, Riise R, Stuecker R, Hasler C. Extraspinal ossifications after implantation of vertical expandablebprosthetic titanium ribs (VEPTRs). J Child Orthop. 2014;8:237–244. DOI: 10.1007/s11832-014-0585-0.
10. O’Brien JP. The Halo-Pelvic apparatus. A clinical, bio-engineering and anatomical study. Acta Orthop Scand Suppl. 1975;163:96,99. DOI: 10.3109/ort.1976.47.suppl-163.01.
11. Dove J. Spontaneous cervical spinal fusion. A complication of halo-pelvic traction. Spine. 1981;6:45–48.
12. Chalmers J, Gray DH, Rush J. Observations on the induction of bone in soft tissues. J Bone Joint Surg Br. 1975;57:36–45. DOI: 10.1302/0301-620X.57B1.36.
13. Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD, Huard. Osteoprogenitor cells within skeletal muscle. J Orthop Res. 2000;18:933–944. DOI: 10.1002/jor.1100180613.
14. Martinez MD, Schmid GJ, McKenzie JA, Ornitz DM, Silva MJ. Healing of nondisplaced fractures produced by fatigue loading of the mouse ulna. Bone. 2010;46:1604–1612. DOI: 10.1016/j.bone.2010.02.030.
15. Groenefeld B, Hell AK. Ossifications after vertical expandable prosthesis titanium rib treatment in children with thotacic insufficiency syndrome and scoliosis. Spine. 2013;38:E819–E823. DOI: 10.1097/BRS.0b013e318292aafa.
16. Huber AK, Patel N, Pagani CA, Marini S, Padmanabhan KR, Matera DL, Said M, Hwang C, Hsu GC, Poli AA, Strong AL, Visser ND, Greenstein JA, Nelson R, Li S, Longaker MT, Tang Y, Weiss SJ, Baker BM, James AW, Levi B. Immobilization after injury alters extracellular matrix and stem cell fate. J Clin Invest. 2020;130:5444–5460. DOI: 10.1172/JCI136142.
17. Betz RR, Petrizzo AM, Kerner PJ, Falatyn SP, Clements DH, Huss GK. Allograft versus no graft with a posterior multisegmental hook system for the treatment of idiopathic scoliosis. Spine. 2006;31:121–127. DOI: 10.1097/01.brs.0000194771.49774.77.
18. Fisk JR, Peterson HA, Laughlin R, Lutz R. Spontaneous fusion in scoliosis after instrumentation without arthrodesis. J Pediatr Orthop. 1995;15:182–186. DOI: 10.1097/01241398-199503000-00010.
19. Sestero AM, Perra JH. A case report of severe kyphoscoliosis and autofusion of the posterior elements in two siblings with central core disease. Spine. 2005;30:E50–E55. DOI: 10.1097/01.brs.0000150648.18222.f4.
20. Rinsky LA, Gamble JG, Bleck EE. Segmental instrumentation without fusion in children with progressive scoliosis. J Pediatr Orthop. 1985;5:687–690. DOI: 10.1097/01241398-198511000-00011.
21. Mardjetko SM, Hammerberg KW, Lubicky JP, Fister JS. The Luque trolley revisited. Rewiev of nine cases requiring revision. Spine. 1992;17:582–589. DOI: 10.1097/00007632-199205000-00018.
22. Flynn JM, Tomlinson LA, Pawelek J, Thompson GH, McCarthy R, Akbarnia BA. Growing-rod graduates: lessons learned from ninety-nine patients who completed lengthening. J Bone Joint Surg Am. 2013;95:1745–1750. DOI: 10.2106/JBJS.L.01386.
23. Lattig F, Taurman R, Hell AK. Treatment of early-onset spinal deformity (EOSD) with VEPTR: a challenge for the final correction spondylodesis – a case series. Clin Spine Surg. 2016;29:E246–E251. DOI: 10.1097/BSD.0b013e31826eaf27.
24. Sankar WN, Skaggs DL, Yazici M, Johnston CE 2nd, Shah SA, Javidan P, Kadakia RV, Day TF, Akbarnia BA. Lengthening of dual growing rods and the low of diminishing returns. Spine. 2011;36:806–809. DOI: 10.1097/BRS.0b013e318214d78f.
25. Noordeen HM, Shah SA, Elsebaie HB, Garrido E, Farooq N, Al-Mukhtar M. In vivo distraction force and length measurements of growing rods: which factor influence the ability to lengthen? Spine. 2011;36:2299–2303. DOI: 10.1097/BRS.0b013e31821b8e16.
26. Gardner A, Beaven A, Marks D, Spilsbury J, Mehta J, Newton Ede M. Does the law of diminishing returns apply to the lengthening of the MCGR rod in early onset scoliosis with reference to growth velocity? J Spine Surg. 2017;3:525–530. DOI: 10.21037/jss.2017.08.16.
27. Gilday SE, Schwartz MS, Bylski-Austrow DI, Glos DL, Schultz L, O’Hara S, Jain VV, Sturm PF. Observed length increases of magnetically controlled growing rods are lower than programmed. J. Pediatr Orthop. 2018;38:e133–e137. DOI: 10.1097/BPO.0000000000001119.
28. Cheung JPY, Sze KY, Cheung KMC, Zhang T. The first magnetically controlled growing rod (MCGR) in the world – lessons learned and how the identified complications helped to develop the implant in the past decade: case report. BMC Musculoscelet Disord. 2021;22:319. DOI: 10.1186/s12891-021-04181-0.
29. Bouthors C, Izatt MT, Adam CJ, Pearcy MJ, Labrom RD, Askin GN. Minimizing spine autofusion with the use of semiconstrained growing rods for early onset scoliosis in children. J Pediatr Orthop. 2018;38:e562–e571. DOI: 10.1097/BPO.0000000000001242.
30. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S. Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J. 2016;16(4 Suppl):S40–S44. DOI: 10.1016/j.spinee.2015.12.099.
31. Miladi L. The minimally invasive bipolar technique for the treatment of spinal deformities in children and adolescents. Coluna/Columna. 2020;19:308–313. DOI: 10.1590/S1808-185120201904238288.
32. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rods technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine. 2005;30(17 Suppl):S46–S57. DOI: 10.1097/01.brs.0000175190.08134.73.
33. Storer SK, Vitale MG, Hyman JE, Lee FY, Choe JC, Roye Jr. Correction of adolescent idiopathic scoliosis using thoracic pedicle screw fixation versus hook constructs. J Pediatr Orthop. 2005;25:415–419. DOI: 10.1097/01.mph.0000165134.38120.87.
34. Mihara Y, Chung WH, Mohamad SM, Chiu CK, Chan CYW, Kwan MK. Predictive factors for correction rate in severe idiopathic scoliosis (Cobb angle ≥90°): an analysis of 128 patients. Eur Spine J. 2021;30:653–660. DOI: 10.1007/s00586-020-06701-3.
35. Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Emans JB, Pawelek JB, Akbarnia BA. Avoidance of “final” surgical fusion after growingrod treatment for early-onset scoliosis. J Bone Joint Surg Am. 2016;98:1073–1078. DOI: 10.2106/JBJS.15.01241.
36. Sawyer JR, de Mendonca RG, Flynn TS, Samdani AF, El-Hawary R, Spurway AJ, Smith JT, Emans JB, St Hilaire TA, Soufleris SJ, Murphy RP. Complications and radiographic outcomes of posterior spinal fusion and observation in patients who have undergone distraction-based treatment for early onset scoliosis. Spine Deform. 2016;4:407–412. DOI: 10.1016/j.jspd.2016.08.007.
37. Kocyigit IA, Olgun ZD, Demirkiran HG, Ayvaz M, Yazici M. Garduation protocol after growing-rod treatment: removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am. 2017;99:1554–1564. DOI: 10.2106/JBJS.17.00031.
38. Ahuja K, Ifthekar S, Mittal S, Bali SK, Yadav G, Goyal N, Sudhakar PV, Kandwai P. Is final fusion necessary for growing-rod graduates: a systematic review and metaanalysis. Global Spine J. 2022;13:209–218. DOI: 10.1177/21925682221090926.
39. Vittoria F, Ceconi V, Fantana L, Barbi E, Carbone M. Effectiveness and safety of a one-early elongation approach of growing rods in the treatment of early-onset scoliosis: a case series of 40 patients with definitive fusion. Front Pediatr. 2022;10:895065. DOI: 10.3389/fped.2022.895065.
40. Du JY, Poe-Kochert C, Thompson GH, Hardesty CK, Pawelek JB, Flynn JM, Emans JB. Risk factors for reoperation following final fusion after the treatment of early-onset scoliosis with traditional growing rods. J Bone Joint Surg Am. 2020;102:1672–1678. DOI: 10.2106/JBJS.20.00312.
41. Poe-Kochert C, Shannon C, Pawelek JB, Thompson GH, Hardesty CK, Marks DS, Akbarnia BA, McCarthy RE, Emans JB. Final fusion after growing-rod treatment for early-onset scoliosis: Is it really final? J Bone Joint Surg Am. 2016;98:1913–1917. DOI: 10.2106/JBJS.15.01334.
42. Murphy RF, Pacult MA, Barfield WR, Gross RH, Mooney JF 3rd. Experience with definitive instrumented final fusion after posterior-based distraction lengthening in patients with early onset spinal deformity: single center results. J Pediatr Orthop B. 2019;28:10–16. DOI: 10.1097/BPB.0000000000000559.
43. Studer D, Buchler P, Hasler CC. Radiographic outcome and complication rate of 34 graduates after treatment with Vertical Expandable Prosthesis Titanium Rib (VEPTR): a single center report. J Pediatr Orthop.2019;39:e731–e736. DOI: 10.1097/BPO.0000000000001338.
44. Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand B, Kose N, Pinero RF, Alder ME, Duong HL, Surber JL. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2004;86:1669–1674. DOI: 10.2106/00004623-200408000-00009.
Рецензия
Для цитирования:
Михайловский М.В., Суздалов В.A. Спонтанные костные блоки в хирургии ранних сколиозов: обзор литературы и анализ собственных данных. Хирургия позвоночника. 2024;21(4):6-17. https://doi.org/10.14531/ss2024.4.6-17
For citation:
Mikhaylovskiy M.V., A. S.V. Autofusion in surgery for early onset scoliosis: literature review and analysis of own data. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2024;21(4):6-17. https://doi.org/10.14531/ss2024.4.6-17