Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Transpedicular implantation using a two-part navigation template in extremely small pedicles

https://doi.org/10.14531/ss2024.4.27-33

Abstract

Objective. To explore results of transpedicular screws insertion in extremely small pedicles using two-part navigation template.

Material and Methods. Eleven consecutive patients with spinal deformities were included in the study. During surgery pedicle screws were implanted using two-part navigation templates with metallic adapter that allow to guide screw insertion as well as pedicle drilling (total of 98 screws including 60 screws in pedicle width lesser than 3.5 mm). Retrospective control group consisted of 46 patients treated using common design navigation templates that guide pedicle drilling only (total of 294 screws including 106 screws in pedicle width lesser than 3.5 mm). Malpositions with “empty” correct transpedicular channel and without one were reported separately.

Results. In extremely small pedicles malposition without “empty” transpedicular channel (due to navigation template misplacement) rates were similar in both groups (8.3 % vs. 8.5 %; p > 0.05). Meanwhile malposition with “empty” transpedicular channel (because of secondary screw deviation) rate was significantly less in two-part template group than in common design template group (3.6 % vs. 17.5 %; p < 0.05).

Conclusion. In pedicle width less than 3.5 mm application of two-part navigation template guiding transpedicular channel drilling and screw insertion allows to reduce the rate of malposition due to secondary screw deviation significantly, while the difference in malposition rate because of template misplacement is insignificant as compared with navigation template of common design.

About the Authors

A. V. Kosulin
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

MD, PhD, associate professor, Department of Operative Surgery and Topographic Anatomy n.a. F.I. Valker



D. V. Elyakin
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

pediatric surgeon, Surgical Department No. 2



D. A. Saburova
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

student, Pediatric Faculty



O. A. Gordievskikh
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

student, Pediatric Faculty



A. D. German
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

student, Pediatric Faculty



I. A. Bulatova
St. Petersburg State Pediatric Medical University 2 Litovskaya str., St. Petersburg, 194100, Russia
Russian Federation

MD, PhD, associate professor, Department of Operative Surgery and Topographic Anatomy n.a. F.I. Valker



References

1. Sharma S, Pahuja S, Gupta V, Singh G, Singh J. 3D printing for spine pathologies: a state-of-the-art review. Biomed Eng Lett. 2023;13:579–589.

2. DOI: 10.1007/s13534-023-00302-x.

3. Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, Bowers CA. Recent advances of 3D-printing in spine surgery. Surg Neurol Int. 2024;15:297. DOI: 10.25259/SNI_460_2024.

4. Katiyar P, Boddapati V, Coury J, Roye B, Vitale M, Lenke L. Three-dimensional printing applications in pediatric spinal surgery: a systematic review. Global Spine J. 2024;14:718–730. DOI: 10.1177/21925682231182341

5. Senkoylu A, Cetinkaya M, Daldal I, Necefov E, Eren A, Samartzis D. Personalized three-dimensional printing pedicle screw guide innovation for the surgical management of patients with adolescent idiopathic scoliosis. World Neurosurg. 2020;144:e513–e522. DOI: 10.1016/j.wneu.2020.08.212.

6. Luo M, Wang W, Yang N, Xia L. Does three-dimensional printing plus pedicle guider technology in severe congenital scoliosis facilitate accurate and efficient pedicle screw placement? Clin Orthop Relat Res. 2019;477:1904–1912.

7. DOI: 10.1097/CORR.0000000000000739.

8. Garg B, Gupta M, Singh M, Kalyanasundaram D. Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: a comparative study. Spine J. 2019;19:56–64. DOI: 10.1016/j.spinee.2018.05.001.

9. Косулин А.В., Елякин Д.В., Корниевский Л.А., Малеков Д.A., Васильева А.Г., Багатурия Г.О., Терехина Е.В. Ширина корня дуги позвонка как предиктор успешной транспедикулярной имплантации у детей // Детская хирургия. 2022. Т. 26. № 5. С. 261–266. [Kosulin AV, Elyakin DV, Kornievskiy LA, Malekov DA, Vasil’eva AG, Bagaturiya GO, Terekhina EV. The pedicle width predicts an accurate screw insertion. Detskaya khirurgiya (Russian Journal of Pediatric Surgery). 2022;26(5):261–266]. DOI: 10.55308/1560-9510-2022-26-5-261-266.

10. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015;24:990–1004. DOI: 10.1007/s00586-015-3853-x.

11. Косулин А.В., Елякин Д.В., Корчагина Д.О., Лукина Н.А., Шибутова Ю.И., Колесникова Е.С. Транспедикулярная фиксация позвоночника с использованием двухуровневых навигационных шаблонов при малых размерах корня дуги. // Хирургия позвоночника. 2021. Т. 18. № 2. С. 26–33. [Kosulin AV, Elyakin DV, Korchagina DO, Lukina NA, Shibutova YuI, Kolesnikova ES. Transpedicular fixation of the spine with two-level navigation templates for narrow pedicles. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2021;18(2):26–33].

12. DOI: 10.14531/ss2021.2.26-33.

13. Matsukawa K, Kaito T, Abe Y. Accuracy of cortical bone trajectory screw placement using patient-specific template guide system. Neurosurg Rev. 2020;43:1135–1142. DOI: 10.1007/s10143-019-01140-1.

14. Marengo N, Matsukawa K, Monticelli M, Ajello M, Pacca P, Cofano F, Penner F, Zenga F, Ducati A, Garbossa D. Cortical bone trajectory screw placement accuracy with a patient-matched 3-dimensional printed guide in lumbar spinal surgery: a clinical study. World Neurosurg. 2019;130:e98–e104.

15. DOI: 10.1016/j.wneu.2019.05.241.

16. Chen H, Wu D, Yang H, Guo K. Clinical use of 3D printing guide plate in posterior lumbar pedicle screw fixation. Med Sci Monit. 2015;21:3948–3954.

17. DOI: 10.12659/msm.895597.

18. Akazawa T, Kotani T, Sakuma T, Minami S, Tsukamoto S, Ishige M. Evaluation of pedicle screw placement by pedicle channel grade in adolescent idiopathic scoliosis: should we challenge narrow pedicles? J Orthop Sci. 2015;20:818–822.

19. DOI: 10.1007/s00776-015-0746-0.

20. Gao B, Gao W, Chen C, Wang Q, Lin S, Xu C, Huang D, Su P. What is the difference in morphologic features of the thoracic pedicle between patients with adolescent idiopathic scoliosis and healthy subjects? A CT-based case-control study. Clin Orthop Relat Res. 2017;475:2765–2774. DOI: 10.1007/s11999-017-5448-9.

21. Jeswani S, Drazin D, Hsieh JC, Shweikeh F, Friedman E, Pashman R, Johnson JP, Kim TT. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus. 2014;36:E6. DOI: 10.3171/2014.1.FOCUS13527.

22. Sarwahi V, Sugarman EP, Wollowick AL, Amaral TD, Lo Y, Thornhill B. Prevalence, distribution, and surgical relevance of abnormal pedicles in spines with adolescent idiopathic scoliosis vs. no deformity: a CT-based study. J Bone Joint Surg Am. 2014;96:e92. DOI: 10.2106/JBJS.M.01058.

23. Zhang Y, Xie J, Wang Y, Bi N, Zhao Z, Li T. Thoracic pedicle classification determined by inner cortical width of pedicles on computed tomography images: its clinical significance for posterior vertebral column resection to treat rigid and severe spinal deformities - a retrospective review of cases. BMC Musculoskelet Disord. 2014;15:278. DOI: 10.1186/1471-2474-15-278.

24. Sugawara T, Higashiyama N, Kaneyama S, Takabatake M, Watanabe N, Uchida F, Sumi M, Mizoi K. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine. 2013;19:185–190. DOI: 10.3171/2013.4.SPINE121059.

25. Liu K, Zhang Q, Li X, Zhao C, Quan X, Zhao R, Chen Z, Li Y. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017;26:1684–1689.

26. DOI: 10.1007/s00586-016-4926-1.

27. Тория В.Г., Виссарионов С.В., Мануковский В.А., Першина П.А. Преимущества применения шаблонов-направителей у детей при коррекции врожденной деформации позвоночника и аномалии развития грудной клетки // Ортопедия, травматология и восстановительная хирургия детского возраста. 2024. Т. 12. № 2. С. 217–223. [Toriya VG, Vissarionov SV, Manukovskiy VA, Pershina PA. Advantages of using template guides in children for the correction of congenital spinal deformities and thoracic anomalies. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(2):217–223]. DOI: 10.17816/PTORS632132.

28. Филатова О.О., Климов А.Г., Селезнев Б.В. Использование смеси трикальцийфосфата и полимолочной кислоты в качестве материалов для трехмерной печати аллопластических блоков // Педиатр. 2017. Т. 8. № 3. С. 47–50. [Filatova OO, Klimov AG, Seleznev BV. The usage of combination of tricalcium phosphate and polylactic acid as materials for 3D printing of alloplastic blocks. Pediatrician (St Petersburg), 2017;8:47–50]. DOI: 10.17816/PED8347-50.

29. Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, Zhao Y, Cui G, Wang Z, Mao K, Wang Y, Cui F. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res A. 2019;107:1386–1392. DOI: 10.1002/jbm.a.36652.


Review

For citations:


Kosulin A.V., Elyakin D.V., Saburova D.A., Gordievskikh O.A., German A.D., Bulatova I.A. Transpedicular implantation using a two-part navigation template in extremely small pedicles. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2024;21(4):27-33. https://doi.org/10.14531/ss2024.4.27-33



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)