Cell therapy for spinal cord contusion injury: evaluation of the efficacy of cryopreserved human umbilical cord blood mononuclear cells in a preclinical model
https://doi.org/10.14531/ss2024.4.46-55
Abstract
Objective. To evaluate the effect of systemic application of cryopreserved human umbilical cord blood mononuclear cells (hUCB-MNCs) in the acute period of spinal cord contusion injury (SCI) on the volume of zone of the spinal cord damage using high-field MRI.
Material and Methods. This study was performed on adult female Sprague-Dowley rats. Severe contusion SCI was modeled using the weight-drop method. Cryopreserved hUCB-MNC concentrate, stored in a cryobank for 3–4 years at –196º°C, was administered intravenously 1 day after injury. Locomotor behavior was assessed when animals moved in an open field using the BBB (Basso – Beatty – Bresnahan) scale for rats. MRI examination of the spinal cord was performed using a Clin Scan 7.0 T device.
Results. At week 6 after injury, a significant increase in the level of restoration of the motor function of the hind limbs (~10 %) was observed in the cell therapy group using hUCB-MNCs relative to the level of the self-healing group (p < 0.05). At the same time, the area of the posttraumatic cystic cavity decreased significantly (~45 %) and statistically significantly (p < 0.05), as well as its transverse (~38%) and longitudinal (~41 %) dimensions.
Conclusion. Cryopreserved hUCB-MNCs may be an effective and affordable means of cell therapy for contusion SCI when used in the acute period of injury.
About the Authors
S. I. RyabovRussian Federation
MD, PhD, leading researcher at the Stem Cell Laboratory
M. A. Zvyagintseva
Russian Federation
PhD in Biology, senior researcher at the Stem Cell Laboratory
S. A. Bazanovich
Russian Federation
junior researcher at the Stem Cell Laboratory
Ya. V. Morozova
Russian Federation
PhD in Social Sciences, senior researcher at the Stem Cell Laboratory; researcher of the Department of emergency neurosurgery
S. M. Radaev
Russian Federation
MD, PhD, researcher of the Department of emergency neurosurgery
S. E. Zuev
Russian Federation
researcher of the Department of emergency neurosurgery
M. A. Khvostova
Russian Federation
clinical intern, neurosurgeon, senior researcher of the Department of emergency neurosurgery
V. A. Karanadze
Russian Federation
MD, PhD, neurosurgeon, Head of the 1st Neurosurgical Department of emergency neurosurgery
A. A. Grin
Russian Federation
DMSc, Prof., corresponding member of the Russian Academy of Sciences, head of the Department of emergency neurosurgery
V. A. Smirnov
Russian Federation
MD, PhD, neurosurgeon, senior researcher of the Department of emergency neurosurgery
References
1. Новосёлова И.Н. Этиология и клиническая эпидемиология позвоночно-спинномозговой травмы. Литературный обзор // Российский нейрохирургический журнал им. проф. А.Л. Поленова. 2019. Т. 11. № 4. С. 84–92. [Novoselova IN. Etiology and clinical epidemiology of spinal cord injury. Literary review. Russian Neurosurgical Journal named after Professor AL Polenov. 2019;11(4):84–92].
2. Chan BCF, Craven BC, Furlan JC. A scoping review on health economics in neurosurgery for acute spine trauma. Neurosurg Focus. 2018;44:E15. DOI: 10.3171/2018.2.FOCUS17778.
3. Gomes ED, Silva NA, Salgado AJ. Combinatorial therapies for spinal cord injury: strategies to induce regeneration. Neural Regen Res. 2019;14:69–71. DOI: 10.4103/1673-5374.243705.
4. Гринь А.А., Некрасов М.А., Кайков А.К., Ощепков С.К., Львов И.С., Иоффе Ю.С., Крылов В.В. Алгоритмы диагностики и лечения пациентов с сочетанной позвоночно-спинномозговой травмой // Хирургия позвоночника. 2012. № 1. С. 8–18. [Grin AA, Nekrasov MA, Kaikov AK, Oschepkov SK, Lvov IS, Ioffe YS, Krylov VV. Algorithms for diagnosis and treatment of patients with concomitant spine and spinal cord injury. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2012;(1):8–18]. DOI: 10.14531/ss2012.1.8-18.
5. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic spinal cord injury – repair and regeneration. Neurosurgery. 2017;80(3S):S9–S22. DOI: 10.1093/neuros/nyw080.
6. Badhiwala JH., Ahuja CS., Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine. 2018;30:1–18. DOI: 10.3171/2018.9.SPINE18682.
7. Aziz J, Liao G, Adams Z, Rizk M, Shorr R, Allan DS. Systematic review of controlled clinical studies using umbilical cord blood for regenerative therapy: Identifying barriers to assessing efficacy. Cytotherapy. 2019;21:1112–1121. DOI: 10.1016/j.jcyt.2019.08.004.
8. Терапевтический потенциал клеток пуповинной крови при негематологических заболеваниях: сборник научных трудов / под ред. М.А. Пальцева, В.Н. Смирнова. Москва, 2012. [Therapeutic Potential of Umbilical Cord Blood Cells for the Treatment of Nonhematological Diseases: Collection of scientific papers, ed. by M.A. Paltsev, V.N. Smirnov. Moscow, 2012].
9. Адылов Ш.Ф., Жаров Е.В., Новицкий А.В., Смолянинов А.Б., Тыренко В.В., Хурцилава О.Г. Оценка безопасности терапии мононуклеарными клетками аллогенной пуповинной крови нейродегенеративных заболеваний // АГ-инфо (Журнал российской ассоциации акушеров-гинекологов). 2010. Т. № 4. С. 3–5. [Adylov SF, Zharov EV, Novitsky AV, Smolyaninov AB, Tyrenko VV, Khurtsilava OG. Assessment of the safety of therapy with mononuclear cells of allogeneic cord blood of neurodegenerative diseases. AG-info (Journal of The Russian Association of Obstetricians and Gynecologists). 2010;4:3–5].
10. Yang WZ, Zhang Y, Wu F, Min WP, Minev B, Zhang M, Luo XL, Ramos F, Ichim TE, Riordan NH, Hu X. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med. 2010;8:75. DOI: 10.1186/1479-5876-8-75.
11. Huang H, Young W, Chen L, Feng S, Zoubi ZMA, Sharma HS, Saberi H, Moviglia GA, He X, Muresanu DF, Sharma A, Otom A, Andrews RJ, Al-Zoubi A, Bryukhovetskiy AS, Chernykh ER, Domańska-Janik K, Jafar E, Johnson WE, Li Y, Li D, Luan Z, Mao G, Shetty AK, Siniscalco D, Skaper S, Sun T, Wang Y, Wiklund L, Xue Q, You SW, Zheng Z, Dimitrijevic MR, Masri WSE, Sanberg PR, Xu Q, Luan G, Chopp M, Cho KS, Zhou XF, Wu P, Liu K, Mobasheri H, Ohtori S, Tanaka H, Han F, Feng Y, Zhang S, Lu Y, Zhang Z, Rao Y, Tang Z, Xi H, Wu L, Shen S, Xue M, Xiang G, Guo X, Yang X, Hao Y, Hu Y, Li J, Ao Q, Wang B, Zhang Z, Lu M, Li T. Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplant. 2018;27:310–324. DOI: 10.1177/0963689717746999.
12. Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine. 2002;27:1504–1510. DOI: 10.1097/00007632-200207150-00005.
13. Basso DM. Behavioral testing after spinal cord injury: congruities, complexities,
14. and controversies. J Neurotrauma. 2004;21:395–404. DOI: 10.1089/089771504323004548.
15. Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol. 2004;17:121–131. DOI: 10.1097/00019052-200404000-00007.
16. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17:1–17. DOI: 10.1089/neu.2000.17.1.
17. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996;139:244–256. DOI: 10.1006/exnr.1996.0098.
18. Рябов С.И., Звягинцева М.А., Павлович Е.Р., Смирнов В.А., Гринь А.А., Чехонин В.П. Эффективность введения клеток плацентарно/пуповинной крови человека крысам с тяжелой травмой спинного мозга // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157. № 1. С. 98–101. [Ryabov SI, Zvyagintseva MA, Pavlovich ER, Smirnov VA, Grin’ AA, Chekhonin VP. Efficiency of transplantation of human placental/umbilical blood cells to rats with severe spinal cord injury. Bull Exp Biol Med. 2014;157(1):85–88]. DOI: 10.1007/s10517-014-2498-9.
19. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21.
20. DOI: 10.1089/neu.1995.12.1.
21. Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CI. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A. 1995;92:10119–10122. DOI: 10.1073/pnas.92.22.10119.
22. Лебедев С.В., Тимофеев С.В., Жарков А.В., Шипилов В.Г., Челышев Ю.А., Масгутова Г.А., Чехонин В.П. Нагрузочные тесты и метод ВВВ при оценке двигательных нарушений у крыс после контузионной травмы спинного мозга // Бюллетень экспериментальной биологии и медицины. 2008. Т. 146. № 10.
23. С. 471–476. [Lebedev SV, Timofeyev SV, Zharkov AV, Schipilov VG, Chelyshev JA, Masgutova GA, Chekhonin VP. Exercise tests and BBB method for evaluation of motor disorders in rats after contusion spinal injury. Bull Exp Biol Med. 2008;146:489–494]. DOI: 10.1007/s10517-009-0328-2.
24. Schallert T. Behavioral tests for preclinical intervention assessment. NeuroRx. 2006;3:497–504. DOI: 10.1016/j.nurx.2006.08.001.
25. Whishaw IQ, Li K, Whishaw PA, Gorny B, Metz GA. Use of rotorod as a method for the qualitative analysis of walking in rat. J Vis Exp. 2008;(22):1030. DOI: 10.3791/1030.
26. Woodring JH, Lee C. Limitations of cervical radiography in the evaluation of acute cervical trauma. J Trauma. 1993;34:32–39. DOI: 10.1097/00005373-199301000-00006.
27. Lammertse D, Dungan D, Dreisbach J, Falci S, Flanders A, Marino R, Schwartz E. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med. 2007;30:205–214.
28. DOI: 10.1080/10790268.2007.11753928.
29. Freund P, Seif M, Weiskopf N, Friston K, Fehlings MG, Thompson AJ, Curt A. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019;18:1123–1135. DOI: 10.1016/S1474-4422(19)30138-3.
30. Pfyffer D, Huber E, Sutter R, Curt A, Freund P. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury. Neurology. 2019;93:e1550–e1560. DOI: 10.1212/WNL.0000000000008318.
31. Pfyffer D, Freund P. Spinal cord pathology revealed by MRI in traumatic spinal cord injury. Curr Opin Neurol. 2021;34:789–795. DOI: 10.1097/WCO.0000000000000998.
32. Карпов Д.А., Сафин Ш.М., Трифонов Я.В. Нейропротективная терапия при спинно-мозговой травме // Современные проблемы науки и образования. 2022. № 4. C. 139. [Karpov DA, Safin SM, Trifonov YV. Neuroprotective therapy for spinal injury. Modern problems of science and education.2022;4:133]. DOI: 10.17513/spno.31794.
33. Nishio Y, Koda N, Kamada T, Someya Y, Yoshinaga K, Okada S, Harada H, Okawa A, Moriya H, Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine. 2006;5:424–433. DOI: 10.3171/spi.2006.5.5.424.
34. Mukhamedshina YO, Gilazieva ZE, Arkhipova SS, Galieva LR, Garanina EE, Shulman AA , Yafarova GG, Chelyshev YA, Shamsutdinova NV, Rizvanov AA. Electrophysiological, morphological, and ultrastructural features of the injured spinal cord tissue after transplantation of human umbilical cord blood mononuclear cells genetically modified with the VEGF and GDNF genes. Neural Plast. 2017:2017:9857918. DOI: 10.1155/2017/9857918.
35. Weber T, Vroemen M, Behr V, Neuberger T, Jakob P, Haase A, Schuierer G, Bogdahn U, Faber C, Weidner N. In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. AJNR Am J Neuroradiol. 2006;27:598–604.
36. Hu R, Zhou J, Luo C, Lin J, Wang X, Li X, Bian X, Li Y, Wan Q, Yu Y, Feng H. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J Neurosurg Spine. 2010;13:169–180. DOI: 10.3171/2010.3.SPINE09190.
37. Stepanova OV, Voronova AD, Chadin AV, Valikhov MP, Semkina AS, Karsuntseva EK, Chekhonin IV, Shishkina VS, Reshetov IV, Chekhonin VP. Efficiency of human olfactory ensheathing cell transplantation into spinal cysts to improve mobility of the hind limbs. Stem Cells Dev. 2019;28:1253–1263. DOI: 10.1089/scd.2019.0092.
38. Zhu H, Poon W, Liu Y, Leung GKK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25:1925–1943. DOI: 10.3727/096368916X691411.
39. Sideri A, Neokleous N, Brunet De La Grange P, Guerton B, Le Bousse Kerdilles MC, Uzan G, Peste-Tsilimidos C, Gluckman E. An overview of the progress on double umbilical cord blood transplantation. Haematologica. 2011;96:1213–1220. DOI: 10.3324/haematol.2010.038836.
40. Laue J, Ambühl J, Surbek D. Hybrid umbilical cord blood banking: literature review. Arch Gynecol Obstet. 2023;309:1–12. DOI: 10.1007/s00404-023-07003-x.
41. Yang L, Ge Y, Tang J, Yuan J, Ge D, Chen H, Zhang H, Cao H. Schwann cells transplantation improves locomotor recovery in rat models with spinal cord injury: a systematic review and meta-analysis. Cell Physiol Biochem. 2015;37:2171–2182. DOI: 10.1159/000438574.
42. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, Baikpour M, Nasirinezhad F, Safari S, Yaseri M, Moghadas Jafari A, Ghelichkhani P, Tafakhori F, Hosseini M. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep. 2018;8:325. DOI: 10.1038/s41598-017-18754-4.
43. Cheng I, Park DY, Mayle RE, Githens M, Smith RL, Park HY, Hu SS, Alamin TF, Wood KB, Kharazi AI. Does timing of transplantation of neural stem cells following spinal cord injury affect outcomes in an animal model? J Spine Surg. 2017;3:567–571. DOI: 10.21037/jss.2017.10.06.
44. Lane MA, Lepore AC, Fischer I. Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury. Expert Rev Neurother. 2017;17:433–440. DOI: 10.1080/14737175.2017.1270206.
45. Arai K, Harada Y, Tomiyama H, Michishita M, Kanno N, Yogo N, Suzuki Y, Hara Y. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury. Res Vet Sci. 2016:107:88–94. DOI: 10.1016/j.rvsc.2016.05.011.
46. Yoshihara T, Ohta M, Itokazu Y, Matsumoto N, Dezawa M, Suzuki Y, Taguchi A, Watanabe Y, Adachi Y, Ikehara S, Sugimoto H, Ide C. Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma. 2007;24:1026–1036. DOI: 10.1089/neu.2007.132R.
Review
For citations:
Ryabov S.I., Zvyagintseva M.A., Bazanovich S.A., Morozova Ya.V., Radaev S.M., Zuev S.E., Khvostova M.A., Karanadze V.A., Grin A.A., Smirnov V.A. Cell therapy for spinal cord contusion injury: evaluation of the efficacy of cryopreserved human umbilical cord blood mononuclear cells in a preclinical model. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2024;21(4):46-55. https://doi.org/10.14531/ss2024.4.46-55