Preview

"Хирургия позвоночника"

Расширенный поиск

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОСТЕОИНТЕГРАЦИИ АЛЮМООКСИДНЫХ БИОКЕРАМИЧЕСКИХ ГРАНУЛ В ЭКСПЕРИМЕНТЕ

https://doi.org/10.14531/ss2014.2.87-101

Полный текст:

Аннотация

Цель исследования. Сравнительный анализ остеоинтеграции биокерамических гранул на основе оксида алюминия, гидроксиапатита и гранул депротеинизированной костной ткани.

Материал и методы. Эксперимент проведен на 52 половозрелых самцах лабораторных крыс Kyoto-Wistar массой от 350 до 520 г. Из животных сформировано пять однородных групп, которые различались только видом имплантированного материала. Гранулы имплантированы в тела поясничных позвонков и в дистальный отдел правой бедренной кости каждого лабораторного животного. Через два месяца после операций проводили эвтаназию лабораторных животных с последующим забором тканей для проведения морфологических исследований.

Результаты. При исследовании препаратов из групп с имплантацией алюмооксидных гранул обнаруживалась сформированная костная ткань трабекулярного строения со следами перестройки. Костная ткань заполняла пространство между гранулами и плотно прилегала к их поверхности. На границе между костной тканью и гранулами алюмооксидной биокерамики соединительно-тканная капсула отсутствовала.

Заключение. Биокерамические гранулы на основе оксида алюминия в виде цилиндров со сквозным внутренним каналом обладают высокой прочностью, превосходящей аналоги, и способностью к остеоинтеграции, близкой к биокерамическим гранулам на основе гидрокисапатита и депротеинизированной костной ткани. 

Об авторах

Виктор Викторович Рерих
Новосибирский НИИ травматологии и ортопедии им. Я.М. Цивьяна»
Россия


Арташес Робертович Аветисян
Новосибирский НИИ травматологии и ортопедии им. Я.М. Цивьяна»
Россия


Алла Михайловна Зайдман
Новосибирский НИИ травматологии и ортопедии им. Я.М. Цивьяна»
Россия


Кирилл Александрович Аникин
Новосибирский НИИ травматологии и ортопедии им. Я.М. Цивьяна»
Россия


Владимир Андреевич Батаев
Новосибирский государственный технический университет
Россия


Екатерина Владимировна Мамонова
Инновационный медико-технологический центр
Россия


Аэлита Александровна Никулина
Новосибирский государственный технический университет
Россия


Анатолий Маркович Аронов
ХК ОАО «НЭВЗ-Союз», Новосибирск
Россия


Екатерина Станиславовна Семанцова
ХК ОАО «НЭВЗ-Союз», Новосибирск
Россия


Список литературы

1. Деев Р.В., Исаев А.А., Кочиш А.Ю. и др. Пути развития клеточных технологий в костной хирургии // Травматология и ортопедия России. 2008. № 1. С. 65-74.

2. Кудяшев А.Л., Губочкин Н.Г. Оценка кровоснабжения несвободного костного аутотрансплантата при лечении больного с ложным суставом ладьевидной кости запястья (клиническое наблюдение) // Травматология и ортопедия России. 2008. № 1. С. 59-61.

3. Alexander D, Hoffmann J, Munz A, et al. Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. J Mater Sci Mater Med. 2008; 19: 965-974.

4. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation.Spine. 1995; 20: 1055-1060.

5. Baramki HG, Steffen T, Lander P, et al. The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine. 2000; 25: 1053-1060.

6. Blattert TR, Jestaedt L, Weckbach A. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine. 2009; 34: 108-114. doi: 10.1097/BRS.0b013e31818f8bc1.

7. Boden SD, Martin GJ Jr, Morone M, et al. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion.Spine. 1999; 24: 320-327.

8. Bozic KJ, Glazer PA, Zurakowski D, et al. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine. 1999; 24: 2127-2133.

9. Carter CB. Ceramics in biology and medicine. In: Carter CB, Norton MG, eds. Ceramic Materials: Science and Engineering. New York, 2007: 635-651. doi: 10.1007/978-0-387-46271-4.

10. Chakraborty J, Basu D. Potential of stem cell to tailor the bone-ceramic interface for better fixation of orthopedic implants. In: Bhattacharya N, Stubblefield P, eds, Frontiers of Cord Blood Science. London, 2009: 331-357.

11. Chissov VI, Sviridova IK, Sergeeva NS, et al. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bull ExpBiol Med. 2008; 146: 139-143.

12. Cinotti G, Patti AM, Vulcano A, et al. Experimental posterolateral spinal fusion with porous ceramics and mesenchymal stem cells. J Bone Joint Surg Br. 2004; 86: 135-142.

13. Daculsi G, Uzel AP, Weiss P, et al. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010; 21: 855-861. doi: 10.1007/s10856-009-3914-y.

14. Dai HI, Cao XY, Li XX. The transformation of calcium phosphate bioceramics in vivo. Journal of Wuhan University of Technology: Mater. Sci. Ed. 2003; 18: 19-22. doi: 10.1007/BF02838792.

15. Dai LY, Jiang L. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus Autograft: a prospective, randomized study with 3-year follow-up. Spine. 2008; 33: 1299-1304. doi: 10.1097/BRS.0b013e3181732a8e.

16. Dai LY, Jiang LS. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up. Eur Spine J. 2008; 17: 69-705. doi: 10.1007/s00586-008-0643-8.

17. Delecrin J, Aguado E, NGuyen JM, et al. Influence of local environment on incorporation of ceramic for lumbar fusion. Spine. 1997; 22: 1683-1689.

18. Della Puppa A, Mottaran R, Scienza R. Image-guided cranial osteoma resection and bioceramic porous hydroxyapatite custom-made reconstruction in a one-step surgical procedure. Technical notes and illustrative case. Acta Neurochir (Wien). 2010; 152: 155-159. doi: 10.1007/s00701-009-0374-6.

19. Dubok VA. Bioceramics - yesterday, today, tomorrow. Powder Metall Met Ceram. 2000; 39: 381-384.

20. Galbusera F, Bertolazzi L, Balossino R, et al. Combined computational study of mechanical behaviour and drug delivery from a porous, hydroxyapatite-based bone graft. Biomech Model Mechanobiol. 2009; 8: 209-216. doi: 10.1007/s10237-008-0132-3.

21. Garbuz VV, Dubok VA, Kravchenko LF, et al. Analysis of the chemical composition of a bioceraamic based on hydroxyapatite and tricalcium phosphate.Powder Metall Met Ceram. 1998; 37: 193-195. doi: 10.1007/BF02675982.

22. Garcia J, Lopez T, Gomez R, et al. Synthesis and characterization of ZrO2-CaSO4 materials prepared by the Sol-Gel method. J Sol-Gel Sci Technol. 2004; 32: 333-337. doi: 10.1007/s10971-004-5812-6.

23. Hao L, Lawrence J, Chian KS, et al. The formation of a hydroxyl bond and the effects thereof on bone-like apatite formation on a magnesia partially stabilized zirconia (MgO-PSZ) bioceramic following CO2 laser irradiation. J Mater Sci Mater Med. 2004; 15: 967-975.

24. Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci Mater Med. 2005; 16: 719-726.

25. Heo HD, Cho YJ, Sheen SH, et al. Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies. Osteoporos Int. 2009;20:2063-2070. doi: 10.1007/s00198-009-0911-4.

26. Huang KY, Yan JJ, Lin RM. Histopathologic findings of retrieved specimens of vertebroplasty with polymethylmethacrylate cement: case control study.Spine. 2005; 30: E585-E588.

27. Ito M, Abumi K, Shono Y, et al. Complications related to hydroxyapatite vertebral spacer in anterior cervical spine surgery. Spine. 2002; 27: 428-431.

28. Jahangir A, Nunley RM, Mehta S, et al. Bone-graft substitutes in orthopaedic surgery. AAOS Now. January 2008 Issue. URL: http://www.aaos.org/news/aaosnow/jan08/reimbursement2.asp.

29. Jallot E, Nedelec JM, Grimault AS, et al. STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf B Biointerfaces. 2005; 42: 205-210.

30. Kai T, Shao-qing G, Geng-ting D. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Spine. 2003; 28: 1653-1658.

31. Kawashima H, Ishikawa S, Fukase M, et al. Successful surgical treatment of angiosarcoma of the spine: a case report. Spine. 2004; 29: E280-E283.

32. Kehr P, Gosset F. Endobon® as a bone substitute in spine surgery. Preliminary study in 11 patients. Eur J Orthop Surg Traumatol. 2000; 10: 217-221. doi: 10.1007/BF01682132.

33. Kim S, Kong YM, Lee IS, et al. Effect of calcinations of starting powder on mechanical properties of hydroxyapatite-alumina bioceramic composite. J Mater Sci Mater Med. 2002; 13: 307-310.

34. Koga A, Tokuhashi Y, Ohkawa A, et al. Effects of fibronectin on osteinductive capability of fresh iliac bone marrow aspirate in posterolateral spinal fusion in rabbits.Spine. 2008; 33: 1318-1323. doi: 10.1097/BRS.0b013e3181732a5d.

35. Lashneva VV, Shevchenko AV, Dudnik EV. Bioceramic based on zirconium dioxide. Glass and Ceramics. 2009; 66: 140-143. doi: 10.1007/s10717-009-9148-0.

36. Le Huec JC, Clement D, Lesprit E, et al. The use of calcium phosphates, their biological properties. Eur J Orthop Surg Traumatol. 2000; 10: 223-229. doi: 10.1007/BF01682134.

37. Le NihouannenD, Duval L, Lecomte A, et al. Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules. J Mater Sci Mater Med. 2007; 18: 1983-1990.

38. Lindgren C, Hallman M, Sennerby L, et al. Back-scattered electron imaging and elemental analysis of retrieved bone tissue following sinus augmentation with deproteinized bovine bone or biphasic calcium phosphate. Clin Oral Implants Res. 2010; 21: 924-930. doi: 10.1111/j.1600-0501.2010.01933.x.

39. Liu JT, Liao WJ, Tan WC, et al. Balloon kyphoplasty versus vertebroplasty for treatment of osteoporotic vertebral compression fracture: a prospective, comparative, and randomized clinical study. Osteoporos Int. 2010; 21: 359-364. doi: 10.1007/s00198-009-0952-8.

40. Matsumine A, Myoui A, Kusuzaki K, et al. Calcium hydroxyapatite ceramic implants in bone tumour surgery. J Bone Joint Surg Br. 2004; 86: 719-725.

41. McConnell JR, Freeman BJ, Debnath UK, et al. A prospective randomized comparison of coralline hydroxyapatite with autograft in cervical interbody fusion. Spine. 2003; 28: 317-323.

42. Minamide A, Yoshida M, Kawakami M, et al. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine. 2005; 30: 1134-1138.

43. Morisue H, Matsumoto M, Chiba K, et al. A novel hydroxyapatite fiber mesh as a carrier for recombinant human bone morphogenetic protein-2 enhances bone union in rat posterolateral fusion model. Spine. 2006; 31: 1194-1200.

44. Nishioka K, Imae S, Kitayama M, et al. Percutaneous vertebroplasty using hydroxyapatite blocks for the treatment of vertebral body fracture. Neurol Med Chir (Tokyo). 2009; 49: 501-506.

45. Nychka JA, Mazur SL, Kashyap S, et al. Dissolution of bioactive glasses: the effects of crystallinity coupled with stress. JOM. 2009; 61: 9: 45-51. doi: 10.1007/s11837-009-0132-5

46. Paderni S, Terzi S, Amendola L. Major bone defect treatment with an osteoconductive bone substitute. Chir Organi Mov. 2009; 93: 89-96. doi: 10.1007/s12306-009-0028-0.

47. Pietak A, Sayer M. Thermoluminescence in silicon substituted apatite and silicon stabilized tricalcium phosphate bioceramic. J Mater Sci. 2006; 41: 5025-5028. doi: 10.1007/s10853-006-0113-9

48. Qi Z, Dai H, Zhang Q, et al. Effect of β-TCP ceramic on the total protein of osteoblasts. Journal of Wuhan University of Technology-Mater Sci Ed. 2007; 22: 98-101. doi: 10.1007/s11595-005-1097-y.

49. Quan R, Yang D, Wu X, et al. In vitro and in vivo biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. J Mater Sci Mater Med. 2008; 19: 183-187.

50. Ruan J, Huang B. FHA bioceramic composite materials enhanced by ZrO2. J CentSouth UnivTechnol. 1994; 1: 19-22.

51. Salma I, Pilmane M, Vetra J, et al. Reactogenicity of synthetic hydroxyapatite (HAp) ceramic materials implanted in rabbits jaws.14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. IFMBE Proceedings. 2008; 20: 72-75. doi: 10.1007/978-3-540-69367-3_20

52. Sanosh KP, Chu MC, Balakrishnan A, et al. Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci. 2009; 32: 465-470. doi: 10.1007/s12034-009-0069-x.

53. Shetty DC, Urs AB, Ahuja P, et al. Mineralized components and their interpretation in the histogenesis of peripheral ossifying fibroma. Indian J Dent Res. 2011; 22: 56-61. doi: 10.4103/0970-9290.79976.

54. Singh M, Berkland C, Detamore MS. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng Part B Rev. 2008; 14: 341- 66. doi: 10.1089/ten.teb.2008.0304.

55. Slater N, Dasmah A, Sennerby L, et al. Back-scattered electron imaging and elemental microanalysis of retrieved bone tissue following maxillary sinus floor augmentation with calcium sulphate. Clin Oral Implants Res. 2008; 19: 814-822. doi: 10.1111/j.1600-0501.2008.01550.x.

56. Smith IO, McCabe LR, Baumann MJ. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomedicine. 2006; 1: 189-194.

57. Smucker JD, Bobst JA, Petersen EB, et al. B2A peptide on ceramic granules enhance posterolateral spinal fusion in rabbits compared with autograft.Spine. 2008; 33: 1324-1329. doi: 10.1097/BRS.0b013e3181732a74.

58. Soon YM, Shin KH, Koh YH, et al. Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. J Eur Ceram Soc. 2011; 31: 13-18. doi.org/10.1016/j.jeurceramsoc.2010.09.008.

59. Soost F, Koch S, Stoll C, et al. Validation of bone conversion in osteoconductive and osteoinductive bone substitutes. Cell Tissue Bank. 2001; 2: 77-86.

60. Supova M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci Mater Med. 2009; 20: 1201-1213. doi: 10.1007/s10856-009-3696-2.

61. Tan CY, Aw KL, Yeo WH, et al. Influence of magnesium doping in hydroxyapatite ceramics.4th Kuala Lumpur International Conference on Biomedical Engineering 2008. IFMBE Proceedings. 2008; 21: 326-329. doi: 10.1007/978-3-540-69139-6_83

62. Toyone T, Tanaka T, Kato D, et al. The treatment of acute thoracolumbar burst fractures with transpedicular intracorporeal hydroxyapatite grafting following indirect reduction and pedicle screw fixation: a prospective study. Spine. 2006; 31: E208-E214. doi: 0.1097/01.brs.0000208161.74286.ad.

63. Vago R. Beyond the skeleton. Cnidarian biomaterials as bioactive extracellular microenvironments for tissue engineering. Organogenesis. 2008; 4: 18-22.

64. Watanabe K, Tsuchiya H, Sakurakichi K, et al. Bone transport using hydroxyapatite loaded with bone morphogenetic protein in rabbits. J Bone Joint Surg Br. 2007; 89: 1122-1129.

65. Wigfield CC, Nelson RJ. Nonautologous interbody fusion materials in cervical spine surgery: how strong is the evidence to justify their use? Spine. 2001; 26: 687-694.

66. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989; 3: 192-195.

67. Zhang DJ, Zhang LF, Xiong ZC, et al. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials. J Mater Sci Mater Med. 2009; 20: 1971-1978. doi: 10.1007/s10856-009-3772-7.


Для цитирования:


Рерих В.В., Аветисян А.Р., Зайдман А.М., Аникин К.А., Батаев В.А., Мамонова Е.В., Никулина А.А., Аронов А.М., Семанцова Е.С. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОСТЕОИНТЕГРАЦИИ АЛЮМООКСИДНЫХ БИОКЕРАМИЧЕСКИХ ГРАНУЛ В ЭКСПЕРИМЕНТЕ. "Хирургия позвоночника". 2014;(2):87-101. https://doi.org/10.14531/ss2014.2.87-101

For citation:


Rerikh V.V., Avetisyan A.R., Zaidman A.M., Anikin K.A., Bataev V.A., Mamonova E.V., Nikulina A.A., Aronov A.M., Semantsova E.S. OSSEOINTEGRATION OF ALUMINA BIOCERAMIC GRANULES: COMPARATIVE EXPERIMENTAL STUDY. Hirurgiâ pozvonočnika (Spine Surgery). 2014;(2):87-101. (In Russ.) https://doi.org/10.14531/ss2014.2.87-101

Просмотров: 77


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)