Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

CREATION OF TISSUE-ENGINEERED LIVING BONE EQUIVALENT AND PROSPECTS FOR ITS APPLICATION IN TRAUMATOLOGY AND ORTHOPAEDICS

https://doi.org/10.14531/ss2014.3.77-85

Abstract

Objective. To present experimental prototypes of tissue-engineered bone equivalent (TEBE) based on nanostructured bioresorbable synthetic polymer cellular matrices (BSPCMs) and osteogenic differentiated cells created to repair bone defects.

Material and Methods. Nanostructured BSPCMs were developed and produced, which further served as the basis for creating TEBE. Cultured cells were transferred on the surface of nanostructured matrix, where patterns of their growth, expansion, and behavior were studied. Topography and surface properties of TEBE prototypes were investigated using methods of light-optical, scanning electron, and atomic force microscopy.

Results. A possibility of creating experimental TEBE prototype based on BSPCM, which copies to the maximum extent the bone structure at the micro- and nanoscales is shown. Surface of the BSPCM was additionally nanostructured by formation of longitudinally oriented nano-trenches, to increase adhesion and osteoconductive properties.

Conclusion. A strategy for creating nanostructured BSPCM and TEBE was developed, and experimental prototypes suitable for further investigations to form biodegradable implants for needs of traumatology, orthopaedics, and spine medicine were produced. 

About the Authors

Pyotr Mikhailovich Larionov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Mikhail Anatolyevich Sadovoy
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Aleksandr Gennadyevich Samokhin
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Olga Mikhailovna Rozhnova
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Arkady Fedorovich Gusev
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Viktor Yakovlevich Prinz
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Vladimir Aleksandrovich Seleznev
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Sergey Vladislavovich Golod
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Aleksandr Viktorovich Prinz
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Ivan Aleksandrovich Korneev
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Aleksandr Ivanovich Komonov
Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk
Russian Federation


Ekaterina Vladimirovna Mamonova
Innovation Medical Techology Center, Novosibirsk
Russian Federation


Yulia Nikolayevna Malyutina
Novosibirsk State Technical University
Russian Federation


Vladimir Andreyevich Bataev
Novosibirsk State Technical University
Russian Federation


References

1. Внутренняя архитектура кости [Электронный ресурс]. http://www.medical-enc.ru/anatomy/vnutrennyaya-arhitektura-kosti.shtml

2. Деев Р.В., Цупкина Н.В., Бозо И.Я. и др. Тканеинженерный эквивалент кости: методологические основы создания и биологические свойства // Клеточная трансплантология и тканевая инженерия. 2011. Т. VI. № 1. С. 63-67.

3. Костная ткань [Электронный ресурс]. http://hystology.ru/kostnaja_tkan.html

4. Севастьянов В.И., Перова Н.В., Довжик И.А. Основные принципы подхода к доклинической оценке имплантатов // Технология живых систем. 2009. Т. 6. № 4. С. 10-20.

5. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей / Под ред. А.А. Лушниковой. М., 2007.

6. Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H. 2010; 224: 1487-1507.

7. Biggs MJ, Richards RG, Gadegaard N, et al. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009; 30: 5094-5103. doi: 10.1016/j.biomaterials.2009.05.049.

8. Cai Y, Liu P, Tang R. Recent patents on nano calcium phosphates. Recent Patents on Materials Science. 2008; 1: 209-216.

9. Dalby MJ, Macintyre A, Roberts JN, et al. Nanoporous titanium substrates for osteogenesis. Nanomedicine (Lond). 2012; 7: 19.

10. Kingham EJ, Tsimbouri PM, Gadegaard N, et al. Nanotopography induced osteogenic differentiation of human stem cells. Bone. 2011; 48: S108-S109. doi: 10.1016/j.bone.2011.03.177.

11. Martins AM, Alves CM, Kasper FK, et al. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J Mater Chem. 2010; 20: 1638-1645. doi: 10.1039/B916259N.

12. McNamara LE, Sjöström T, Burgess K, et al. Characterisation of mesenchymal stem cell responses to titanium nanopillars for orthopaedic applications. Eur Cell Mater. 2011; 22(Suppl 2): 7.

13. Morris HL, Reed CI, Haycock JW, et al. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1509-1521.

14. Navarro M, Planell JA. Composite scaffolds for bone tissue regeneration. In: Wiley Encyclopedia of Composites. 2011: 1-14.

15. Ponche A, Bigerelle M, Anselme K. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: physico-chemical effects. Proc Inst Mech Eng H. 2010; 224: 1471-1486.

16. Smith IO, Liu XH, Smith LA, et al. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009; 1: 226-236. doi: 10.1002/wnan.26.

17. Special Issue on Bone Tissue Engineering. Proc Inst Mech Eng H: Journal of Engineering in Medicine. 2010; 224: 1329-1566.

18. Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1359-1372.

19. Tare RS, Kanczler J, Aarvold A, et al. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H. 2010; 224: 1455-1470.

20. Thompson MS, Epari DR, Bieler F, et al. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1533-1541.

21. Willie BM, Petersen A, Schmidt-Bleek K, et al. Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter. 2010; 6: 4976-4987. doi: 10.1039/C0SM00262C.

22. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009; 4: 66-80. doi: 10.1016/j.nantod.2008.10.014.

23. Zorlutuna P, Annabi N, Camci-Unal G, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater. 2012; 24: 1782-1804.


Review

For citations:


Larionov P.M., Sadovoy M.A., Samokhin A.G., Rozhnova O.M., Gusev A.F., Prinz V.Ya., Seleznev V.A., Golod S.V., Prinz A.V., Korneev I.A., Komonov A.I., Mamonova E.V., Malyutina Yu.N., Bataev V.A. CREATION OF TISSUE-ENGINEERED LIVING BONE EQUIVALENT AND PROSPECTS FOR ITS APPLICATION IN TRAUMATOLOGY AND ORTHOPAEDICS. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(3):77-85. (In Russ.) https://doi.org/10.14531/ss2014.3.77-85



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)