Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

PERIPROSTHETIC BONE DENSITY CHANGES EVALUATION USING COMPUTED TOMOGRAPHY

https://doi.org/10.14531/ss2005.4.72-76

Abstract

The aim of this study was to examine the effect of the presence of two types of metallic intervertebral lumbar fusion implants (a porous nitinol and a hollow titanium cylindrical implants) in the implant peripheral tissue after 3, 6 and 12 months post-implantation in a lumbar sheep model in order to evaluate and compare the biofunctionality and biocompatibility of both implants. 19 sheep were used to evaluate this bone density variation using computer tomography (CT). 16 of them received both implants at either level L2–L3 or L4–L5 and 3 other non-treated animals were used as controls. Results indicated that PNT obtained a superior biofunctionality that the conventional titanium implant. However, the biocompatibility of porous nitinol seemed comparable to that of titanium – a well-known long-term implant material.

About the Authors

Fidele Likibi
Hospital Sainte-Justine, Centre de Recherche Pediatrique, Ecole Polytechnique/Universite de Montreal, Institut de Genie Biomedical
Russian Federation


Michel Assad
Biorthex Inc., Montreal, Canada
Russian Federation


Christine Coillard
Hospital Sainte-Justine, Centre de Recherche Pediatrique
Russian Federation


Gilles Chabot
Hospital Sainte-Justine, Centre de Recherche Pediatrique
Russian Federation


Charles-H. . Rivard
Hospital Sainte-Justine, Centre de Recherche Pediatrique, Ecole Polytechnique/Universite de Montreal, Institut de Genie Biomedical, Biorthex Inc., Montreal, Canada
Russian Federation


References

1. Murdoch D.R., Roberts S.A., Fowler Jr.V.G., Shah M.A., Taylor S.L., Morris A.J., Corey G.R. Infection of orthopedic prostheses aftere staphylococcus aureus bacteremia. Clin Infect Dis 32: 647–649; 2001.

2. Mulholland R.C. Cages: outcome and complications. Eur Spine J 9 (suppl 1): S110–S113; 2000.

3. Harris W.H. The problem is osteolysis. Clin Orthop 311: 46–53; 1995.

4. Utvag S.E., Reikeras O. Effects of nail rigidity on fracture healing. Strength and mineralisation in rat femoral bone. Arch Orthop Trauma Surg 118: 7–13; 1998.

5. Yamaji T., Ando K., Wolf S., Augat P., Claes L. The effect of micromovement on callus formation. J. Orthop Sci 6: 571-575; 2001.

6. Sturmer K.M. Pathophysiology of disrupted bone healing. Orthopade 25: 386–393; 1996.

7. Wolf S., Augat P., Eckert-Hubner K., Laude A., Krischak G.D., Claes L.E. Effects of highfrequency, low-magnitude mechanical stimulus on bone healing. Clin Orthop 385: 192–198; 2001.

8. Stoneciper T., Wright S. Posterior lumbar interbody fusion with facet-screw fixation. Spine 14: 468–471; 1989.

9. Karpinski M.R., Szymanska M. Posterior lumbar interbody fusion and cages. Chir Narzadow Ruchu Ortop Pol 64: 463–470; 1999.

10. Pazzaglia U.E. Periosteal and endosteal reaction to reaming and nailing: the possible role of revascularization on the endosteal anchorage of cementless stems. Biomaterials 17: 1009–1014; 1996.

11. Vanesmaa P., Kroger H., Miettinen H., Jurvelin J., Suomalainen O., Alhava E. Bone loss around failed femoral implant by dual-energy X-ray absorptiometry. J. Orthop Sci 5: 380–384; 2000.

12. Spittlehouse A.J., Smith T.W., Eastell R. Bone loss around 2 different types of hip prostheses. J. Arthroplasty 13: 422–427; 1998.

13. Neander G., von Sivers K., Adolphson P., Dahlborn M., Dalen N. An evaluation of bone loss after total arthroplasty for femoral head necrosis after femoral neck fracture: a quantitative CT study in 16 patients. J Arthroplasty 14: 64–70; 1999.

14. Puleo D.A., Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 20: 2311-2321; 1999.

15. Kim T.I., Han J.H., Lee I.S., Lee K.H., Shin M.C., Choi B.B. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Bio-Med Mat & Eng 7: 253–263; 1997.

16. Khan M.A., Williams R.L., Williams D.F. Conjoint corrosion and wear in titanium alloys. Biomaterials 20: 765-772; 1999.

17. Yoda S., Sakurai Y., Endo A., Miyata T., Otake K., Yanagishita H., Tsuchiya T. TiO2 montmorillonite composites via supercritical intercalation. Chem Commun 14: 1526–1527; 2002.

18. Langford R.J., Fram J.W. Tissue changes adjacent to titanium plates in patients. J Craniomaxillofac Surg 30: 103–107; 2002.

19. Konig J.B., Beck T.J., Kappert H.F., Kappert C.C., Masuko T.S. A study of different calcification areas in newly formed bone 8 weeks after insertion of dental implants in rabbit tibias. Ann Anat 180: 471–475; 1998.

20. Glassman A.H., Crowninshield R.D., Schenck R., Herberts P. A low stiffness composite biologically fixed prosthesis. Clin Orthop 393: 128–136; 2001.

21. Gautier E., Perren S.M., Cordey J. Strain distribution in the plated and unplated sheep tibia an in vivo experiment. Injury 31: 37–44; 2000.

22. Tamai N., Myoui A., Tomita T., Nakase T., Tanaka J., Ochi T., Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res 59: 110–117; 2002.

23. Steflik D.E., Corpe R.S., Young T.R., Sisk A.L., Parr G.R. The biologic tissue responses to uncoated and coated implanted biomaterials. Adv Dent Res 13: 27–33; 1999.

24. Lumbikanonda N., Sammons R. Bone cell attachment to dental implants of different surface characteristics. J. Oral Maxillofac Implants 16: 627–636; 2001.


Review

For citations:


Likibi F., Assad M., Coillard Ch., Chabot G., Rivard Ch. PERIPROSTHETIC BONE DENSITY CHANGES EVALUATION USING COMPUTED TOMOGRAPHY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2005;(4):072-076. (In Russ.) https://doi.org/10.14531/ss2005.4.72-76



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)