Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

BIOMECHANICAL SUBSTANTIATION OF OPTIMAL CONTENT OF COMPOSITE USED IN PERCUTANEOS VERTEBROPLASTY

https://doi.org/10.14531/ss2006.2.68-74

Abstract

Objectives. To specify optimal content of the injectable composite material for percutanious vertebroplasty.

Material and Methods. Two sets of experiments were performed. Alimentary osteoporosis was induced in 19 rats and confirmed histologically in 3 rats. Sixteen rats underwent anterior procedure of spherical defect drilling in L6 vertebral body. The defect was filled with bone cement (Osteopol-V) in group I (n = 8) and with composite material (Osteopol-V – 80 %; hydroxiapatite (HAP) – 4 %; tricalcium phosphate (TCP) – 16 %) in group II (n = 8). Vertebral bodies were extirpated three months after vertebroplasty. Four bodies in each group were subjected to biomechanical testing, another four – to hystological one.

Results. The elastic modulus of composite material is most similar to that of the cortical bone when it contains 80–90 % of bone cement with HAP/TCP ratio to be 2:8, as was confirmed by mathematical calculations. Mechanical testing of specimens have shown that the most strong composite contain 80 % of bone cement, 4 % of HAP, and 16 % of TCP. Experimental testing of intact osteoporotic vertebral bodies vs vertebral bodies 3 months after vertebroplasty with bone cement (Group I) and with composite material (Group II) has clearly shown, that composite material provides a higher strength, bone tissue ingrowth into resorbable ceramic, and a solid osteointegration.

Conclusion. New injectable composite material significantly increases the strength and stiffness of both fractured and nonfractured osteoporotic vertebrae. This material can be used for restabilization of osteoporotic compression fracture and for prevention of vertebral body compression in osteoporosis.

About the Authors

Aleksandr Ivanovich Prodan
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


Gennady Kharlampyevich Gruntovsky
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


Andrey Ivanovich Popov
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


Mikhail Yuryevich Karpinsky
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


Igor Abatolyevich Subbota
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


Elena Dmitryevna Karpinskaya
Institute of Spine and Joint Pathology n.a. M.I. Sitenko, Kharkov
Russian Federation


References

1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. М., 2000.

2. Дубок В.А. Биокерамика – вчера, сегодня, завтра // Порошковая металлургия. 2000. № 7–8. С. 69–87.

3. Дуров О.В., Шевелев И.Н., Тиссен Т.Н. Вертебропластика при лечении заболеваний позвоночника // Вопросы нейрохирургии. 2004. № 1. С. 21–25.

4. Педаченко Е.Г., Кущаев С.В. Костные цементы для пункционной вертебропластики // Ортопед., травматол. и протезир. 2001. № 1. С. 108–114.

5. Педаченко Е.Г., Кущаев С.В., Рогожин В.А. и др. Пункционная вертебропластика при агрессивных гемангиомах тел позвонков // Вопросы нейрохирургии. 2004. № 1. С. 16–21.

6. Слуцкий Л.И. Биохимия нормальной и патологически измененной соединительной ткани. Рига, 1968.

7. Щепеткин И.А. Кальцийфосфатные материалы в биологических средах // Успехи соврем. биологии. 1995. Т. 115. Вып. 1. С. 58–73.

8. Alvares L., Perez-Higueras A., Quinones D., et al. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life // Eur. Spine J. 2003. Vol. 12. P. 356–360.

9. Belkoff S.M., Maroney M., Fenton D.C., et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty // Bone. 1999. Vol. 25. Suppl. 2. P. 23S–26S.

10. Belkoff S.M., Mathis J.M., Erbe E.M., et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty // Spine. 2000. Vol. 25. P. 1061–1064.

11. Belkoff S.M., Molloy S. Temperature measurement during polymerization of polymethylmethacrilate cement used for vertebroplasty // Spine. 2003. Vol. 28. P. 1555–1559.

12. Berlemann U., Franz T., Orler R., et al. Kyphoplasty for treatment of osteoporotic vertebral fractures: a prospective non-randomized study // Eur. Spine J. 2004. Vol. 13. P. 496–501.

13. Cotten A., Dewatre F., Cortet B., et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up // Radiology. 1996. Vol. 200. P. 525–530.

14. Deramond H., Depriester C., Galibert P., et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results // Radiol. Clin. North Am. 1998. Vol. 36. P. 533–546.

15. Gaitanis I.N., Hadjipavlou A.G., Katonis P.G., et al. Balloon kyphoplasty for the treatment of pathological vertebral compressive fractures // Eur. Spine J. 2005. Vol. 14. P. 250–260.

16. Galibert P., Deramond H., Rosat P., et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty] // Neurochirurqie. 1987. Vol. 33. P. 166–168. French.

17. Garfin S.R., Yuan H.A., Reiley M.A. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures // Spine. 2001. Vol. 26. P. 1511–1515.

18. Harms J., Mausle E. Tissue reaction to ceramic implant material // J. Biomed. Mater. Res. 1979. Vol. 13. P. 67–87.

19. Heini P.F., Orler R. Kyphoplasty for treatment of osteoporotic vertebral fractures // Eur. Spine J. 2004. Vol. 13. P. 184–192.

20. Higgins K.B., Harten R.D., Langrana N.A., et al. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae // Spine. 2003. Vol. 28. P. 1540–1548.

21. Jang J.S., Kim D.Y., Lee S.H. Efficacy of percutaneous vertebroplasty in the treatment of intravertebral pseudarthrosis associated with noninfected avascular necrosis of the vertebral body // Spine. 2003. Vol. 28. P. 1588–1592.

22. Jarvik J.G., Kallmes D.F., Mirza S.K. Vertebroplasty: learning more, but not enough // Spine. 2003. Vol. 28. P. 1487–1489.

23. Mehbod A., Aunoble S., Le-Huec J.C. Vertebroplasty for osteoporotic spine fracture: prevention and treatment // Eur. Spine J. 2003. Vol. 12. Suppl. 2. P. S155–S162.

24. Molloy S., Mathis J.M., Belkoff S.M. The effect of vertebral body persentage fill on mechanical behavior during percutaneous vertebroplasty // Spine. 2003. Vol. 28. P. 1549–1554.

25. Osteopol®-V Vertebroplasty. Biomet-Merck, 2004.

26. Schildhauer T.A., Bennett A.P., Wright T.M., et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique // J. Orthop. Res. 1999. Vol. 17. P. 67–72.

27. Togawa D., Bauer T.W., Lieberman I.H., et al. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate // Spine. 2003. Vol. 28. P. 1521–1527.

28. Tohmeh A.G., Mathis J.M., Fenton D.C., et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty of the management of osteoporotic compression fractures // Spine. 1999. Vol. 24. P. 1772–1776.

29. Weill A., Chiras J., Simon J.M., et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement // Radiology. 1996. Vol. 199. P. 241–247.


Review

For citations:


Prodan A.I., Gruntovsky G.Kh., Popov A.I., Karpinsky M.Yu., Subbota I.A., Karpinskaya E.D. BIOMECHANICAL SUBSTANTIATION OF OPTIMAL CONTENT OF COMPOSITE USED IN PERCUTANEOS VERTEBROPLASTY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2006;(2):068-074. (In Russ.) https://doi.org/10.14531/ss2006.2.68-74



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)