Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

THE INFLUENCE OF DYNAMIC FIXATION ON LUMBAR SEGMENTAL MOBILITY

https://doi.org/10.14531/ss2008.4.30-36

Abstract

Objective. Comparative assessment of the influence of dynamic implants COFLEX, DIAM, and DYNESYS on a mobility of lumbar spinal segments in vitro. Material and Methods. Fifteen unfreezed human spine specimens each including L2—L3, L3—L4, and L4—L5 segments were studied. Muscle tissues were removed, while ligaments, facet joints, and intervertebral disc were retained. Segmental motion was tested using a device equipped with tensometric sensors recording the applied force and linear motion of vertebra along three mutually perpendicular axes. The range of linear flexion/extension and lateral motions of vertebrae was measured under the load of -120 to +120 N, and the size of neutral region was determined. Measurements were performed at intact segment after resection of posterior supporting complex, and after placement of dynamical implants. Results. The range of linear flexion/extension motion was reduced by 57 % in specimens with COFLEX, by 32 % — with DIAM, and by 69 % — with DYNESIS implants. All three devices decreased the volume of flexion in a sagittal plane — by 70, 57, and 87 %, respectively. Linear extension was significantly reduced by COFLEX and DYNESIS, and insignificantly — by DIAM. Essential decrease in motion range in lateral bending (25 %) was detected only in specimens with DYNESIS implant. Conclusion. Interspinous implants COFLEX and DIAM limit the motion of spinal segment only in a sagittal plane, though transpedicular system DYNESIS reduces it in sagittal and coronal planes.

About the Authors

Aleksandr Evgenyevich Simonovich
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


Sergey Petrovich Markin
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


Khusniddin Adashalievich Nuraliev
Research Institute of Traumatology and Orthopaedics, Republic of Uzbekistan
Russian Federation


Igor Ivanovich Snezhkov
Siberian State University of Railway Transport
Russian Federation


References

1. Aalto T.J., Malmivaara A., Kovacs F., et al. Preoperative predictors for postoperative clinical outcome in lumbar spinal stenosis: systematic review // Spine. 2006. Vol. 31. P. E648–E663.

2. Benini A. [Lumbar spinal stenosis. An overview 50 years following initial description] // Orthopade. 1993. Vol. 22. P. 257–266. German.

3. Benini A. [Stenosis of the lumbar spinal canal. Pathophysiology, clinical aspects and therapy] // Orthopade. 1997. Vol. 26. P. 503–514. German.

4. Christie S.D., Song J.K., Fessler R.G. Dynamic interspinous process technology // Spine. 2005. Vol. 30. Suppl. 16. P. S73–S78.

5. Ciol M.A., Deyo R.A., Howell E., et al. An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations // J. Am. Geriatr. Soc. 1996. Vol. 44. P. 285–290.

6. Fuchs P.D., Lindsey D.P., Hsu K.Y., et al. The use of an interspinous implant in conjunction with a graded facetectomy procedure // Spine. 2005. Vol. 30. P. 1266–1272.

7. Fujiwara A., Lim T.H., An H.S., et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine // Spine. 2000. Vol. 25. P. 3036–3044.

8. Fujiwara A., Tamai K., An H.S., et al. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine // J. Spinal Disord. 2000. Vol. 13. P. 444–500.

9. Gibson J.N., Waddell G. Surgery for degenerative lumbar spondylosis: updated Cochrane review // Spine. 2005. Vol. 30. P. 2312–2320.

10. Goel V.K., Panjabi M.M. A new standard guide for the testing of spinal implant constructs, Part I: Guide for the multidirectional instability evaluation of the construct // ASTM (draft version). 1992. Vol. 6. P. 1–9.

11. Goel V.K., Panjabi M.M., Patwardhan A.G., et al. Test protocols for evaluation of spinal implants // J. Bone Joint Surg. Am. 2006. Vol. 88. Suppl. 2. P. 103–109.

12. Grob D., Benini A., Junge A., et al. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years // Spine. 2005. Vol. 30. P. 324–331.

13. Gunzburg R., Szpalski M. The conservative surgical treatment of lumbar spinal stenosis in the elderly // Eur. Spine J. 2003. Vol. 12. Suppl. 2. P. S176–S180.

14. Knaub M.A., Won D.S., McGuire R., et al. Lumbar spinal stenosis: indications for arthrodesis and spinal instrumentation // Instr. Course Lect. 2005. Vol. 54. P. 313–319.

15. Lindsey D.P., Swanson K.E., Fuchs P., et al. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine // Spine. 2003. Vol. 28. P. 2192–2197.

16. Mimura M., Panjabi M.M., Oxland T.R., et al. Disc degeneration affects the multidirectional flexibility of the lumbar spine // Spine. 1994. Vol. 19. P. 1371–1380.

17. Niosi C.A., Zhu Q.A., Wilson D.C., et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study // Eur. Spine J. 2006. Vol. 15. P. 913–922.

18. Putzier M., Schneider S.V., Funk J., et al. [Application of a dynamic pedicle screw system (DYNESYS) for lumbar segmental degenerations: comparison of clinical and radiological results for different indications] // Z. Orthop. Ihre Grenzgeb. 2004. Vol. 142. P. 166–173. German.

19. Rompe J.D., Eysel P., Zollner J., et al. Degenerative lumbar spinal stenosis. Long-term results after undercutting decompression compared with decompressive laminectomy alone or with instrumented fusion // Neurosurg. Rev. 1999. Vol. 22. P. 102–106.

20. Schmoelz W., Huber J.F., Nydegger T., et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure // Eur. Spine J. 2006. Vol. 15. P. 1276–1285.

21. Schmoelz W., Huber J.F., Nydegger T., et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment // J. Spinal Disord. Tech. 2003. Vol. 16. P. 418–423.

22. Schnake K.J., Schaeren S., Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis // Spine. 2006. Vol. 31. P. 442–449.

23. Schulte T.L., Bullmann V., Lerner T., et al. Lumbar spinal stenosis // Orthopade. 2006. Vol. 35. P. 675–692.

24. Schwarzenbach O., Berlemann U., Stoll T.M., et al. Posterior dynamic stabilization systems: DYNESYS // Orthop. Clin. North Am. 2005. Vol. 36. P. 363–372.

25. Stoll T.M., Dubois G., Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system // Eur. Spine J. 2002. Vol. 11. Suppl.2. P. S170–S178.

26. Swanson K.E., Lindsey D.P., Hsu K.Y., et al. The effects of an interspinous implant on intervertebral disc pressures // Spine. 2003. Vol. 28. P. 26–32.

27. Tsai K.J., Murakami H., Lowery G.L., et al. A biomechanical evaluation of an interspinous device (Coflex) used to stabilize the lumbar spine // J. Surg. Orthop. Adv. 2006. Vol. 15. P. 167–172.

28. White A.A., Panjabi M.M. Clinical biomechanics of the spine. 2nd ed. Philadelphia, 1990.

29. Whitesides T.E.Jr. The effect of an interspinous implant on intervertebral disc pressures // Spine. 2003. Vol. 28. P. 1906–1907.

30. Wilke H.J., Drumm J., Häussler K., et al. Segmental stability and intradiscal pressure achieved with different interspinous implants // Eur. Spine J. 2006. Vol. 15. P. 1561–1632.

31. Wilke H.J., Rohlmann F., Neidlinger-Wilke C., et al. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine // Eur. Spine J. 2006. Vol. 15. P. 720–730.

32. Wilke H.J., Schmidt H., Werner K., et al. Biomechanical evaluation of a new total posterior-element replacement system // Spine. 2006. Vol. 31. P. 2790–2796.

33. Wilke H.J., Wenger K., Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants // Eur. Spine J. 1998. Vol. 7. P. 148–154.

34. Wiseman C.M., Lindsey D.P., Fredrick A.D., et al. The effect of an interspinous process implant on facet loading during extension // Spine. 2005. Vol. 30. P. 903–907.

35. Zindrick M.R., Wiltse L.L., Widell E.H., et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine // Clin. Orthop. 1986. N 203. P. 99–112.


Review

For citations:


Simonovich A.E., Markin S.P., Nuraliev Kh.A., Snezhkov I.I. THE INFLUENCE OF DYNAMIC FIXATION ON LUMBAR SEGMENTAL MOBILITY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2008;(4):030-036. (In Russ.) https://doi.org/10.14531/ss2008.4.30-36



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)