Preview

"Хирургия позвоночника"

Расширенный поиск

СТРОЕНИЕ, ФУНКЦИИ И РОЛЬ ЗАМЫКАТЕЛЬНЫХ ПЛАСТИНОК В РАЗВИТИИ ДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ ПОЗВОНОЧНИКА: ОБЗОР ЛИТЕРАТУРЫ

https://doi.org/10.14531/ss2017.4.95-102

Полный текст:

Аннотация

Замыкательная пластинка имеет решающее значение для нормального функционирования здорового межпозвонкового диска. Она обеспечивает структурную поддержку позвоночника, регулирует поток питательных веществ и метаболические обменные процессы в диске. С возрастом и в патогенезе заболеваний хрящ подвергается дегенерации и кальцификации, нарушая доступ питательных веществ к клеткам, меняя биохимическую и морфологическую структуру пластинки и метаболические процессы во всем диске. Ряд доказательств указывает на существование иннервации замыкательной пластинки, поэтому ее повреждение может быть источником хронической боли в пояснице. В представленном обзоре литературы освещаются вопросы анатомии, физиологии замыкательных пластинок тел позвонков, описываются связи изменения их морфологической и молекулярной структур с дегенеративным поражением межпозвонковых дисков и хроническим болевым синдромом в спине. Материалом исследования послужили тезисы статей из базы данных «PubMed», статьи из журналов «The Journal of Bone and Joint Surgery», «Spine», «European Spine Journal» за последние 15 лет. При необходимости использованы книги и статьи прежних лет.

Об авторах

Татьяна Васильевна Русова
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия

канд. биол. наук, старший научный сотрудник лабораторно-экспериментального отдела, Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна

630091, Россия, Новосибирск, ул. Фрунзе, 17



Анастасия Александровна Воропаева
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия

канд. биол. наук, научный сотрудник лабораторно-экспериментального отдела, Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна

630091, Россия, Новосибирск, ул. Фрунзе, 17



Список литературы

1. Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, Kimura T, Masuda K. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine. 2007;32:635–642. DOI: 10.1097/01.brs.0000257556.90850.53.

2. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P. Mechanical initiation of intervertebral disc degeneration. Spine. 2000;25:1625–1636. DOI: 10.1097/00007632-200007010-00005.

3. Alkhatib B, Rosenzweig DH, Krock E, Roughley PJ, Beckman L, Steffen T, Weber MH, Ouellet JA, Haglund L. Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. Eur Cell Mater. 2014;28:98–111.

4. Antonacci MD, Mody DR, Rutz K, Weilbaecher D, Heggeness MH. A histologic study of fractured human vertebral bodies. J Spinal Disord Tech. 2002;15:118–126.

5. Anatoniou J, Goudsouzian M, Heathfield TF, Winterbottom N, Steffen T, Poole AR, Aebi M, Alini M. The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine. 1996;21:1153–1161.

6. Arana CJ, Diamandis EP, Kandel RA. Cartilage tissue enhances proteoglycan retention by nucleus pulposus cells in vitro. Arthritis Rheum. 2010;62:3395–3403. DOI: 10.1002/art.27651.

7. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine. 2005;30:167–173.

8. Bibby SR, Urban JP. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J. 2004;13:695–701. DOI: 10.1007/s00586-003-0616-x.

9. Bibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine. 2005;30:487–496. DOI: 10.1097/01.brs.0000154619.38122.47.

10. Binch AL, Cole AA, Breakwell LM, Michael AL, Chiverton N, Cross AK, Le Maitre CL. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res Ther. 2014;16:416. DOI: 10.1186/s13075-014-0416-1.

11. Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol. 1997;108:471–480. DOI: 10.1007/s004180050187.

12. Buckwalter JA, Smith KC, Kazarien LE, Rosenberg LC, Ungar R. Articular cartilage and intervertebral disc proteoglycans differ in structure: an electron microscopic study. J Orthop Res. 1989;7:146–151. DOI: 10.1002/jor.1100070121.

13. Chen S, Huang Y, Zhou ZJ, Hu ZJ, Wang JY, Xu WB, Fang XQ, Fan SW. Upregulation of tumor necrosis factor alpha and ADAMTS-5, but not ADAMTS-4, in human intervertebral cartilage endplate with modic changes. Spine. 2014;39:E817–E825. DOI: 10.1097/BRS.0000000000000362.

14. Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. 2013;9:400-410. DOI: 10.1038/nrrheum.2013.44.

15. David G, Ciurea AV, Iencean SM, Mohan A. Angiogenesis in the degeneration of the lumbar intervertebral disc. J Med Life. 2010;3:154–161.

16. Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R. ISSLS prize winner: The innervation of the intervertebral disc: a quantitative analysis. Spine. 2003;28:2570–2576. DOI: 10.1097/01.BRS.0000096942.29660.B1.

17. Fields AJ, Liebenberg EC, Lotz JC. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J. 2014;14:513–521. DOI: 10.1016/j.spinee.2013.06.075.

18. Giers MB, Munter BT, Eyster KJ, Ide GD, Newcomb AGUS, Lehrman JN, Belykh E, Byvaltsev VA, Kelly BP, Preul MC, Theodore N. Biomechanical and endplate effects on nutrient transport in the intervertebral disc. World Neurosurg. 2017;99:395–402. DOI: 10.1016/j.wneu.2016.12.041.

19. Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine. 2001;26:889–896. DOI: 10.1097/00007632-200104150-00012.

20. Grant JP, Oxland TR, Dvorak MF, Fisher CG. The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res. 2002;20:1115–1120. DOI: 10.1016/S0736-0266(02)00039-6.

21. Grant MP, Epure LM, Bokhari R, Roughley P, Antoniou J, Mwale F. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur Cell Mater. 2016;32:137–151. DOI: 10.22203/eCM.v032a09.

22. Grignon B, Grignon Y, Mainard D, Braun M, Netter P, Roland J. The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat. 2000;22:13–19.

23. Gruber HE, Hoelscher GL, Bethea S, Hanley EN Jr. Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells. Biotech Histochem. 2012;87:506–511. DOI: 10.3109/10520295.2012.703692.

24. Gruber HE, Ingram JA, Cox MD, Hanley EN Jr. Matrix metalloproteinase-12 immunolocalization in the degenerating human intervertebral disc and sand rat spine: Biologic implications. Exp Mol Pathol. 2014;97:1–5. DOI: 10.1016/j.yexmp.2014.04.007.

25. Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am. 2011;42:465–477. DOI: 10.1016/j.ocl.2011.07.010.

26. Guehring T, Wilde G, Sumner M, Grunhagen T, Karney GB, Tirlapur UK, Urban JP. Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum. 2009;60:1026–1034. DOI: 10.1002/art.24407.

27. Gullbrand SE, Peterson J, Ahlborn J, Mastropolo R, Fricker A, Roberts TT, Abousayed M, Lawrence JP, Glennon JC, Ledet EH. ISSLS Prize Winner: Dynamic loading-induced convective transport enhances intervertebral disc nutrition. Spine. 2015;40:1158–1164. DOI: 10.1097/BRS.0000000000001012.

28. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br. 2008;90:1261–1270. DOI: 10.1302/0301-620X.90B10.20910.

29. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine. 1997;22:1085–1091. DOI: 10.1097/00007632-199705150-00006.

30. Hee HT, Chuah YJ, Tan BH, Setiobudi T, Wong HK. Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc // Spine (Phila Pa 1976). 2011 Apr 1;36(7):505–11.

31. Herrero CF, Garcia SB, Garcia LV, Aparecido Defino HL. Endplates changes related to age and vertebral segment. BioMed Res Int. 2014;2014:545017. DOI: 10.1155/2014/545017.

32. Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine. 2001;26:2543–2549. DOI: 10.1097/00007632-200112010-00006.

33. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP. Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine. 2002;27:1018–1028.

34. Huang CY, Yuan TY, Jackson AR, Hazbun L, Fraker C, Gu WY. Effects of low glucose concentrations on oxygen consumption rates of intervertebral disc cells. Spine. 2007;32:2063–2069. DOI: 10.1097/BRS.0b013e318145a521.

35. Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007;41:946–957. DOI: 10.1016/j.bone.2007.08.019.

36. Ito K, Creemers L. Mechanisms of intervertebral disk degeneration/injury and pain: a review. Global Spine J. 2013;3:145–152. DOI: 10.1055/s-0033-1347300.

37. Ishihara H, Urban JP. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res. 1999;17:829–835. DOI: 10.1002/jor.1100170607.

38. Jackson AR, Yuan TY, Huang CY, Brown MD, Gu WY. Nutrient transport in human annulus fibrosus is affected by compressive strain and anisotropy. Ann Biomed Eng. 2012;40:2551–2558. DOI: 10.1007/s10439-012-0606-4.

39. Kovacs FM, Arana E, Royuela A, Estremera A, Amengual G, Asenjo B, Sarasibar H, Galarraga I, Alonso A, Casillas C, Muriel A, Martinez C, Abraira V. Vertebral endplate changes are not associated with chronic low back pain among Southern European subjects: a case control study. AJNR Am J Neuroradiol. 2012;33:1519–1524. DOI: 10.3174/ajnr.A3087.

40. Langrana NA, Kale SP, Edwards WT, Lee CK, Kopacz KJ. Measurement and analyses of the effects of adjacent end plate curvatures on vertebral stresses. Spine J. 2006;6:267–278. DOI: 10.1016/j.spinee.2005.09.008.

41. Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, Kwon YD, Shin DE. Interleukin-1beta induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res. 2011;29:265–269. DOI: 10.1002/jor.21210.

42. Liu C, Zhao QL, Wang LT, Wang H, Xu HG. The effect of the endplate cartilage in the degeneration of intervertebral disc. Austin J Orthopade & Rheumatol. 2016;3:1035.

43. Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine. 2000;25:1477–1483. DOI: 10.1097/00007632-200006150-00005.

44. Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain. Global Spine J. 2013;3:153–164. DOI: 10.1055/s-0033-1347298.

45. Malandrino A, Lacroix D, Hellmich C, Ito K, Ferguson SJ, Noailly J. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Osteoarthritis Cartilage 2014;22:1053–1060. DOI: 10.1016/j.joca.2014.05.005.

46. MacLean JJ, Owen JP, Iatridis JC. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J Biomech. 2007;40:55–63. DOI: 10.1016/j.jbiomech.2005.11.013.

47. Moore RJ. The vertebral end-plate: what do we know? Eur Spine J. 2000;9:92–96. DOI: 10.1007/s005860050217.

48. Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J. 2006;15(Suppl 3):333–337. DOI: 10.1007/s00586-006-0170-4.

49. Nazarian A, Snyder BD, Zurakowski D, Muller R. Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone. 2008;43:302–311. DOI: 10.1016/j.bone.2008.04.009.

50. Nekkanty S, Yerramshetty J, Kim D G. Zauel R, Johnson E, Cody DD, Yeni YN. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies. Bone. 2010;47:783–789. DOI: 10.1016/j.bone.2010.07.001.

51. Niinimaki J, Korkiakoski A, Parviainen O, Haapea M, Kuisma M, Ojala RO, Karppinen J, Korpelainen R, Tervonen O, Nieminen MT. Association of lumbar artery narrowing, degenerative changes in disc and endplate and apparent diffusion in disc on postcontrast enhancement of lumbar intervertebral disc. Magn Reson Mater Phy. 2009;22:101–109. DOI: 10.1007/s10334-008-0151-1.

52. Peng B, Hou S, Shi Q, Jia L. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study. Chin Med J (Engl). 2001;114:308–312.

53. Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X. Diagnosis and surgical treatment of back pain originating from endplate. Eur Spine J. 2009;18:1035–1040. DOI: 10.1007/s00586-009-0938-4.

54. Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine. 2004;29:2654–2667. DOI: 10.1097/01.brs.0000148014.15210.64.

55. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10:44–56. DOI: 10.1038/nrrheum.2013.160.

56. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine. 1989;14:166–174. DOI: 10.1097/00007632-198902000-00005.

57. Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res. 1993;11:747–757. DOI: 10.1002/jor.1100110517.

58. Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC. Human disc nucleus properties and vertebral endplate permeability. Spine. 2011;36:512–520. DOI: 10.1097/BRS.0b013e3181f72b94.

59. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC. Morphology of the human vertebral endplate. J Orthop Res. 2012;30:280–287. DOI: 10.1002/jor.21513.

60. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine. 2004;29:2691–2699.

61. Shirazi-Adl A, Taheri M, Urban JP. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J Biomech. 2010;43:1330–1336. DOI: 10.1016/j.jbiomech.2010.01.023.

62. Taylor TK, Merlose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ. Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine. 2000;25:3014–3020. DOI: 10.1097/00007632-200012010-00008.

63. Tomaszewski KA, Adamek D, Konopka T, Tomaszewska R, Walocha JA. Endplate calcification and cervical intervertebral disc degeneration: the role of endplate marrow contact channel occlusion. Folia Morphol (Warsz). 2015;74:84–92. DOI: 10.5603/FM.2015.0014.

64. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine. 2004;29:2700–2709. DOI: 10.1097/01.brs.0000146499.97948.52.

65. Wade KR, Robertson PA, Broom ND. A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J. 2011;20:1225–1232. DOI: 10.1007/s00586-011-1704-y.

66. Wagner AL, Murtagh FR, Arrington JA, Stallworth D. Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 2000;21:276–281.

67. Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech. 2004;37:329–337. DOI: 10.1016/S0021-9290(03)00290-2.

68. Wang Y, Videman T, Battie MC. ISSLS prize winner: Lumbar vertebral endplate lesions associations with disc degeneration and back pain history. Spine. 2012;37:1490–1496. DOI: 10.1097/BRS.0b013e3182608ac4.

69. Williams FM, Manek NJ, Sambrook PN, Spector TD, Macgregor AJ. Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum. 2007;57:855–860. DOI: 10.1002/art.22789.

70. Wong M, Siegrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone. 2003;33:685–693. DOI: 10.1016/S8756-3282(03)00242-4.

71. Wu Y, Cisewski S, Sachs BL, Yao H. Effect of cartilage endplate on cell based disc regeneration: a finite element analysis. Mol Cell Biomech. 2013;10:159–182.

72. Wu Y, Cisewski SE, Sachs BL, Pellegrini VD, Kern MJ, Slate EH, Yao H. The region-dependent biomechanical and biochemical properties of bovine cartilaginous endplate. J Biomech. 2015;48:3185–3191. DOI: 10.1016/j.jbiomech.2015.07.005.

73. Zhang Q, Huang M, Wang X, Xu X, Ni M, Wang Y. Negative effects of ADAMTS-7 and ADAMTS-12 on endplate cartilage differentiation. J Orthop Res. 2012;30:1238–1243. DOI: 10.1002/jor.22069.

74. Zhang Y, Lenart BA, Lee JK, Chen D, Shi P, Ren J, Muehleman C, Chen D, An HS. Histological features of endplates of the mammalian spine: from mice to men. Spine. 2014;39:E312–E317. DOI: 10.1097/BRS.0000000000000174.

75. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone. 2009;44:372–379. DOI: 10.1016/j.bone.2008.10.048.


Для цитирования:


Русова Т.В., Воропаева А.А. СТРОЕНИЕ, ФУНКЦИИ И РОЛЬ ЗАМЫКАТЕЛЬНЫХ ПЛАСТИНОК В РАЗВИТИИ ДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ ПОЗВОНОЧНИКА: ОБЗОР ЛИТЕРАТУРЫ. "Хирургия позвоночника". 2017;14(4):95-102. https://doi.org/10.14531/ss2017.4.95-102

For citation:


Rusova T.V., Voropaeva A.A. STRUCTURE, FUNCTIONS AND ROLE OF ENDPLATES IN THE DEVELOPMENT OF DEGENERATIVE DISEASES OF THE SPINE: A LITERATURE REVIEW. Hirurgiâ pozvonočnika (Spine Surgery). 2017;14(4):95-102. (In Russ.) https://doi.org/10.14531/ss2017.4.95-102

Просмотров: 320


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)