Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Experimental substantiation of osteotransplant application in traumatic vertebral defects

https://doi.org/10.14531/2018.4.41-51

Abstract

Objective. To analyze the features of bone tissue formation during plasty of vertebral body defect or fracture with an allogeneic bone graft in an experiment in vitro.

Material and Methods. Models of the vertebral body defect (fracture of the cranioventral part with penetration into the nucleus pulposus) were created in an experiment on 20 mini-pigs of the same age. Plasty of traumatic defects was performed with allogeneic bone graft or autologous bone. CT, histological, and spectrometric studies of microscopic specimens were carried out at 14, 30, 90, and 180 day. Reparative osteogenesis, X-ray density, Ca and P content, and microhardness were studied.

Results. After implantation of allogeneic bone graft, an organ-specific bone similar to the recipient’s bone in morphological structure, X-ray density, mineral composition and microhardness, was formed on the 90th day (P = 0.01). After transplantation of autobone, the regenerate formed by this day in the central part was in a phase of resorption and restructuring with lower indices of X-ray density, content of Ca and P, and microhardness (P = 0.01).

Conclusion. Аfter plasty of vertebral body traumatic defects with allogeneic bone graft, the organ-specific bone tissue is formed at an earlier time and reliably exhibits greater mineralization and strength.

About the Authors

V. V. Rerikh
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan; Novosibirsk State Medical University
Russian Federation

DMSc, Head of the Functional group, senior researcher

Frunze str.,17, Novosibirsk, 630091

professor of traumatology and orthopedics

Krasny pr., 52, Novosibirsk, 630091



Yu. A. Predein
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

orthopedic traumatologist

Frunze str.,17, Novosibirsk, 630091



A. M. Zaidman
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

DMSc, Prof., Head of the Functional group of Pathomorphology and Theoretical Research in Vertebrology in the Laboratory-Experimental Department

Frunze str.,17, Novosibirsk, 630091



A. D. Lastevsky
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

orthopedic traumatologist, researcher

Frunze str.,17, Novosibirsk, 630091



V.A. Bataev V.A. Bataev V.A. Bataev
Novosibirsk State Technical University
Russian Federation

DSc in Technics, Prof, Head of the Department of Material Science in Mechanical Engineering

K. Marksa pr., 20, Novosibirsk, 630073



A. A. Nikulina
Novosibirsk State Technical University
Russian Federation

 PhD in Technics, researcher of the Department of the Material Science in Mechanical Engineering

K. Marksa pr., 20, Novosibirsk, 630073



References

1. Apicella A, Apicella D, Syed J, Aversa R. Innovative biomaterials in bone tissue engineering and regenerative medicine. In: Tatullo M., ed., MSCs and Innovative Biomaterials in Dentistry. Springer International Publishing, 2017:63–84.

2. Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45:185–192. DOI: 10.3109/21691401.2016.1146731.

3. Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: a systematic review. Cell Prolif. 2017;50(2). DOI: 10.1111/cpr.12321.

4. Bose S, Tarafder S, Bandyopadhyay A. Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng. 2017;45:261–272. DOI: 10.1007/s10439-016-1646-y.

5. Gordeladze JO, Haugen HJ, Lyngstadaas SP, Reseland JE. Bone tissue engineering: state of the art, challenges, and prospects. In: Hasan A., ed., Tissue Engineering for Artificial Organs: Regenerative Medicine, Smart Diagnostics and Personalized Medicine. Wiley, 2017:525–551.

6. Ng J, Spiller K, Bernhard J, Vunjak-Novakovic G. Biomimetic approaches for bone tissue engineering. Tissue Eng Part B Rev. 2017;23:480–493. DOI: 10.1089/ten. TEB.2016.0289.

7. Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine. 2017;12:4937–4961. DOI: 10.2147/IJN.S124671.

8. Smith BT, Santoro M, Grosfeld EC, Shah SR, van den Beucken JJJP, Jansen JA, Mikos AG. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomater. 2017;50:68–77. DOI: 10.1016/j.actbio.2016.12.024.

9. Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol. 2017;98:67–74. DOI: 10.1016/j.ijbiomac.2017.01.089.

10. Tan GH, Goss BG, Thorpe PJ, Williams RP. CT-based classification of long spinal allograft fusion.Eur Spine J. 2007;16:1875–1881. DOI: 10.1007/s00586-007-0376-0.

11. Vasyliev R, Oksymets VM, Rodnichenko A, Zlatska AV, Gubar OS, Zubov DO. Tissue engineering-based approach for restoration of combat related critical sized bone defects. Cytotherapy. 2017;19:S223–S224. DOI: 10.1016/j.jcyt.2017.02.311.

12. Westphal I, Jedelhauser C, Liebsch G, Wilhelmi A, Aszodi A, Schieker M. Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering. Biotechnol Bioeng. 2017;114:894–902. DOI: 10.1002/bit.26202.

13. Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Engineering Part B: Reviews. 2017;23:1–8. DOI: 10.1089/ten.TEB.2015.0559.

14. Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017:2374161. DOI: 10.1155/2017/2374161.

15. Zhang XY, Fang G, Zhou J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials (Basel). 2017;10:50. DOI: 10.3390/ma10010050.

16. Бруско А. Т., Гайко Г. В. Современные представления о стадиях репаративной регенерации костной ткани при переломах // Вісник ортопедії, травматології та протезування. 2014. № 2. С. 5–8. [Brusko AT, Gaiko GV. Contemporary ideas about the stages of reparative bone tissue regeneration in fractures. Visnik ortopedii, travmatologii ta protezuvannya. 2014;(2):5–8. In Russian].

17. Дедух Н. В., Сыкал А. А. Регенерация кости при сахарном диабете 2-го типа (экспериментальное исследование) // Проблеми остеології. 2015. Т. 18. № 4. С. 12–18. [Dedukh NV, Sykal AA. Bone repair under type 2 diabetes mellitus (experimental investigation). Problemi osteologii. 2015;18(4):12–18. In Russian].

18. Зайдман А.М., Косарева О.С., Щелкунова Е.И., Корель А.В., Сухих А.В., Строкова Е.Л., Иванова Н.А., Рерих В.В., Предеин Ю.А., Ластевский Д.А., Агеева Т.А., Гусев А.Ф. Экспериментальное обоснование применения трехмерного остеотрансплантата для регенерации костной ткани различной локализации и гистогенеза // Современные проблемы науки и образования. 2016. № 6. URL: https://www.science-education.ru/ru/article/view?id=25582. [Zaidman AM, Kosareva OS, Shchelkunova EI, Korel AV, Sukhikh AV, Strokova EL, Ivanova NA, Rerikh VV, Predein YuA., Lastevsky DA, Ageeva TA, Gusev AF. Experimental substantiation of application of three-dimensional bone graft for regeneration of bone tissue of various localization and histogenesis. Modern Problems of Science and Education.2016;(6). URL: https://www.science-education.ru/ru/article/view?id=25582. In Russian].

19. Rerikh VV, Lastevskiy AD, Sadovoy MA, Zaidman AM, Bataev AV, Predein YuA, Avetisyan AR, Romanenko VV, Mamonova EV, Nikulina AA, Semantsova ES, Smirnov AI. Experimental verification of using nanostructured ceramic implants and osteograft. AIP Conference Proceedings. 2017;1882:020059. DOI: 10.1063/1.5001638.

20. Drueke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89:289–302. DOI: 10.1016/j.kint.2015.12.004.

21. Harris PE, Bouloux PM. Metabolic bone disease. In: Endocrinology in Clinical Practice, ed. by P.E. Harris, P.M. Bouloux. CRC Press, 2014:243.

22. Picke AK, Gordaliza Alaguero I, Campbell GM, Glüer CC, Salbach-Hirsch J, Rauner M, Hofbauer LC, Hofbauer C. Bone defect regeneration and cortical bone parameters of type 2 diabetic rats are improved by insulin therapy. Bone. 2016;82:108–115. DOI: 10.1016/j.bone.2015.06.001.

23. Chen C, Li D, Wang Z, Li T, Liu X, Zhong J. Safety and efficacy studies of vertebroplasty, kyphoplasty, and mesh-container-plasty for the treatment of vertebral compression fractures: preliminary report. PloS One. 2016;11:e0151492. DOI: 10.1371/journal.pone.0151492.

24. Guo JB, Zhu Y, Chen BL, Xie B, Zhang WY, Yang YJ, Yue YS, Wang XQ. Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and meta-analysis. PloS One. 2015;10:e0127145. DOI: 10.1371/journal.pone.0127145.

25. Stauff MP, Carragee EJ. Vertebral compression fracture rules. Spine J. 2014;14:971–972. DOI: 10.1016/j.spinee.2014.03.005.

26. Зайдман А.М., Корель А.В., Щелкунова Е.И., Иванова Н.А. Способ получения трехмерного остеотрансплантата // Патент RU 2574942. Заявка 2014145384/15 от 11.11.2014 г., опубликовано 10.02.2016 г., Бюл. № 4. [Zaidman AM, Korel’ AV, Shchelkunova EG, Ivanova NA. Method for producing three-dimensional bone graft. Patent RU 2574942. Appl. 11.11.2014; Publ. 10.02.2016. Bul. 4. In Russian].

27. Зайдман А.М. Новый пластический материал для лечения вертебральной патологии и не только… // Хирургия позвоночника. 2018. № 2. С. 91–97. [Zaidman AM. New plastic material for the treatment of vertebral pathology and not only... Hir. Pozvonoc. 2018;15(2):91–97. In Russian]. DOI: http://dx.doi.org/10.14531/ss2018.2.91-97.

28. Misch CE, Meffert RM. Implant quality of health scale: A clinical assessment of the health disease continuum. In: Dental Implant Prosthetics, ed. by C.E. Misch. St. Louis: Elsevier Mosby, 2005:596–603.

29. Паршев С.Н., Полозенко Н.Ю. Микротвердость материалов. Волгоград, 2004. [Parshev SN, Polozenko NYu. Microhardness of Materials. Volgograd, 2004. In Russian].

30. Supova M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci Mater Med. 2009;20:1201–1213. DOI: 10.1007/s10856-009-3696-2.


Review

For citations:


Rerikh V.V., Predein Yu.A., Zaidman A.M., Lastevsky A.D., V.A. Bataev V.V., Nikulina A.A. Experimental substantiation of osteotransplant application in traumatic vertebral defects. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2018;15(4):41-51. https://doi.org/10.14531/2018.4.41-51



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)