BIOMECHANICAL MODELING IN SURGICAL TREATMENT OF A PATIENT WITH TRUE LUMBAR SPONDYLOLISTHESIS
https://doi.org/10.14531/2018.4.87-94
Abstract
Objective. To assess the results of clinical approbation of individual finite-element biomechanical model of a patient’s spino-pelvic complex with subsequent modeling of the best option of surgical treatment.
Material and Methods. A biomechanical modeling of changes in the sagittal profile of a patient with degenerative disease of the lumbosacral spine, bilateral spondylolysis, and unstable grade 2 spondylolisthesis of the L4 vertebra was performed. The developed biomechanical model made it possible to assess the characteristics of the stress-strain state of the spinal motion segments aroused due to development of the disease. Within the built biomechanical model of the patient’s spino-pelvic complex, a corrective operation was further modeled that assumed a preservation of harmonious profile of sagittal spino-pelvic relationships. Post-correction characteristics of the stress-strain state of spinal motion segments were studied and compared with preoperative parameters of the biomechanical model.
Results. Using methods of biomechanics and computer modeling allowed to calculate the stress-strain state of the lumbosacral spine under static load for two options of fixation and intervertebral cage implantation at the L4–L5 level: four transpedicular screws (L4–L5 vertebrae) and six transpedicular screws (L3–L4–L5 vertebrae). The simulation results showed that neither metal implants, nor elements of the lumbosacral spine experienced critical stresses and deformations that could lead to the destruction and instability of the implant.
Conclusion. The developed individual biomechanical finite-element solid model of the spine and pelvis allowed for biomechanical justification of prerequisites for the formation and further progression of degenerative changes in spinal motion segments associated with violations of the sagittal profile due to grade 2 spondylolisthesis of the L4 vertebra. The model built on the results of radiological examination biomechanically substantiated the best option of corrective spine surgery allowing to minimize stresses and deformations by choosing reasonable magnitude of correction of sagittal spino-pelvic parameters and configuration of transpedicular system.
About the Authors
A. L. KudiashevRussian Federation
MD, PhD, associate professor, deputy head of the Department and Clinic of Military Traumatology and Orthopedics
Academika Lebedeva str., 6, St. Petersburg, 194044
V. V. Khominets
Russian Federation
DMSc, Professor, Head of the Department and Clinic of Military Traumatology and Orthopedics
Academika Lebedeva str., 6, St. Petersburg, 194044
A. V. Teremshonok
Russian Federation
MD, PhD, assistant professor of the Department of Military Traumatology and Orthopedics
Academika Lebedeva str., 6, St. Petersburg, 194044
E. B. Nagorny
Russian Federation
MD, PhD, Associate Professor, Lecturer of the Department of Military Traumatology and Orthopedics
Academika Lebedeva str., 6, St. Petersburg, 194044
S. Yu. Stadnichenko
Russian Federation
clinical resident of the Department of Military Traumatology and Orthopedics
Academika Lebedeva str., 6, St. Petersburg, 194044
A. V. Dol
Russian Federation
PhD in Physics and Mathematics, senior researcher of the Laboratory of Clinical Decision Support Systems
Astrakhanskaya str., 83, Saratov, 410012,
D. V. Ivanov
Russian Federation
PhD in Physics and Mathematics, leading researcher of the Laboratory of Clinical Decision Support Systems
Astrakhanskaya str., 83, Saratov, 410012
I. V. Kirillova
Russian Federation
PhD in Physics and Mathematics, associate professor, Head of the Laboratory of Clinical Decision Support Systems
Astrakhanskaya str., 83, Saratov, 410012
L. Yu. Kossovich
Russian Federation
Doctor of Physics and Mathematics, Processor, Scientific Supervisor of the Laboratory of Clinical Decision Support Systems
Astrakhanskaya str., 83, Saratov, 410012
A. L. Kovtun
Russian Federation
Doctor of Biological Sciences, Professor, Head of the Project Group of chemical-biological and medical research direction
Berezhkovskaya nab., 22, building 3, Moscow, 121059
References
1. Vialle R, Ilharreborde B, Dauzac C, Lenoir T, Rillardon L, Guigui P. Is there a sagittal imbalance of the spine in isthmic spondylolisthesis? A correlation study. Eur Spine J. 2007;16:1641–1649. DOI: 10.1007/s00586-007-0348-4.
2. Дюбуссе Ж. Основные принципы вертебральной хирургии // Хирургия позвоночника. 2016. № 4. С. 95–103. [Dubousset J. Basic principles of spine surgery. Hir. Pozvonoc. 2016;13(4):95–103. In Russian]. DOI: https://doi.org/10.14531/ss2016.4.95-103.
3. Крутько А.В. Сагиттальный баланс. Гармония в формулах. Новосибирск, 2016. [Krutko AV. Sagittal Balance. Harmony in Formulas. Novosibirsk, 2016. In Russian].
4. Le Huec JC, Faundez A, Dominguez D, Hoffmeyer P, Aunoble S. Evidence showing the relationship between sagittal balance and clinical outcomes in surgical treatment of degenerative spinal diseases: a literature review. Int Orthop. 2015;39:87–95. DOI: 10.1007/s00264-014-2516-6.
5. Дюбуссе Ж. Позвоночник трехмерен, но не следует путать 3D-выстраивание и 3D-баланс // Хирургия позвоночника. 2016. № 2. С. 77–85. [Dubousset J. The spine is three-dimensional entity, though 3d alignment and 3d balance should not be confused. Hir. Pozvonoc. 2016;13(2):77–85. In Russian]. DOI: https://doi.org/10.14531/ss2016.2.77-85.
6. Жук Д. М., Никулина А.А. Разработка системы эффективного анализа сагиттального позвоночно-тазового баланса // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015 № 6. С. 346–360. [Zhuk DM, Nikulina AA. Developing a system for efficient analysis of lumbosacral sagittal balance. Science and Education of the Bauman MSTU. Electronic journal. 2015;(6):346–360. In Russian]. DOI: http://dx.doi.org/10.7463/0615.0783321.
7. Kaneko K, Aota Y, Sekiya T, Yamada K, Saito T. Validation study of arm positions for evaluation of global spinal balance in EOS imaging. Eur J Orthop Surg. Traumatol. 2016;7:725–733. DOI: 10.1007/s00590-016-1813-8.
8. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, Little JP, Park WM, Wang YH, Wilke HJ, Rohlmann A, Schmidt H. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014;47:1757–1766. DOI: 10.1016/j.jbiomech.2014.04.002.
9. Wang J, Zhong ZC, Cheng CK, Chen CS, Yu CH, Chang TK, Wei SH. Finite element analysis of the spondylolysis in lumbar spine. Biomed Mater Eng. 2006;16:301–308.
10. Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998;7:148–154. DOI: 10.1007/s005860050045.
11. Ben-Hatira F, Saidane K, Mrabet A. A finite element modeling of the human lumbar unit including the spinal cord. J Biomedical Science and Engineering. 2012;5:146–152. DOI: 10.4236/jbise.2012.53019
Review
For citations:
Kudiashev A.L., Khominets V.V., Teremshonok A.V., Nagorny E.B., Stadnichenko S.Yu., Dol A.V., Ivanov D.V., Kirillova I.V., Kossovich L.Yu., Kovtun A.L. BIOMECHANICAL MODELING IN SURGICAL TREATMENT OF A PATIENT WITH TRUE LUMBAR SPONDYLOLISTHESIS. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2018;15(4):87-94. https://doi.org/10.14531/2018.4.87-94