Preview

"Хирургия позвоночника"

Расширенный поиск

Магнитно-контролируемые стержни в хирургии ранних сколиозов: обзор англоязычной литературы

https://doi.org/10.14531/ss2020.1.25-41

Полный текст:

Аннотация

Цель обзора – представить многостороннюю информацию о лечении маленьких детей с тяжелыми сколиозами с помощью магнитноконтролируемых стержней (MCGR). Этот перспективный, но неоднозначный метод в нашей стране пока недостаточно известен. В обзоре освещены история развития метода, техника операции, частота этиологических форм деформаций позвоночника, подробно изложены результаты коррекции сколиозов, включая наиболее тяжелые случаи. Количественно и качественно описаны осложнения, возникающие в процессе лечения, в том числе характерные только для этого метода (slippage phenomena). Отдельно обсуждается проблема повторных операций, сравниваются возможности MCGR и других методик, построенных на принципе дистракции. Представлены особенности применения MCGR у взрослых пациентов, динамика основной дуги в послеоперационном периоде (работает ли правило Sankar?), возможности УЗИ при контроле эффективности магнитных стержней, применение МРТ одновременно с MCGR, сравнительная стоимость метода. Особое внимание уделено проблеме единого протокола этапных удлинений стержней. Складывается впечатление, что первоначальный энтузиазм несколько уменьшился. По общему мнению, необходимы новые исследования.

Об авторах

М. В. Михайловский
Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна
Россия

Михаил Витальевич Михайловский, д-р мед. наук, проф., главный научный сотрудник отдела детской вертебрологии

630091, Новосибирск, ул. Фрунзе, 17



А. А. Альшевская
Научный центр биостатистики и клинических исследований
Россия

Алина Анатольевна Альшевская, канд. мед. наук, руководитель отдела биомедицинских исследований

630090, Новосибирск, пр. акад. Лаврентьева, 6/1



Список литературы

1. Dickson R. Early onset idiopathic scoliosis. In: Weinstein S.L., ed. The Pediatric Spine: Principles and Practice. New York: Raven Press, 1994:421–429.

2. Skaggs D, Guillaume T, El-Hawary R, Emans J, Menelow M, Smith J. Early Onset Scoliosis Consensus Satement, SRS Growing Spine Committee, 2015. Spine Deform. 2015;3:107. DOI: 10.1016/j.jspd.2015.01.002.

3. Cotrel Y, Morel G. [The elongation-derotation-flexion technic in the correction of scoliosis]. Rev Chir Orthop Reparatrice Appar Mot. 1964;50:59–75. In French.

4. Harrington P. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44:591–610.

5. Moe JH, Kharrat K, Winter RB, Cummine JL. Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res. 1984;(185):35–45.

6. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rods technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine. 2005;30 (17 Suppl):S46–S57. DOI: 10.1097/01.brs.0000175190.08134.73.

7. Skaggs DL, Akbarnia BA, Flynn JM, Myung KS, Sponseller PD, Vitale MG. A classification of growth friendly spine implants. J Pediatr Orthop. 2014;34:260–274. DOI: 10.1097/BPO.0000000000000073.

8. Flynn J, Matsumoto H, Torres F, Ramirez N, Vitale MG. Psyphological dysfunction in children who require repetitive surgery for early onset scoliosis. J Pediatr Orthop. 2012;32:594–599. DOI: 10.1097/BPO.0b013e31826028ea.

9. Bess S, Akbarnia B, Thompson G, Sponseller P, Skaggs , Shah S, Canale S, Poe-Kochert C. 27. Complications in 910 growing rod surgeries: use of dual rods and submuscular placement of rods decreases complications. Spine J. 2008;8:13S–14S. DOI: 10.1016/j.spinee.2008.06.031.

10. Figueiredo N, Kananeh SF, Sigueira HH, Figueiredo RC, Al Sebai MW. The use of magnetically controlled growth rod device for pediatric scoliosis. Neurosciences (Riyadh). 2016;21:17–25. DOI: 10.17712/nsj.2016.1.20150266.

11. Miladi L. A new type of growing rod. Preliminary results. J Child Orthop. 2009;3:145–168.

12. Soubeiran A, Miladi L, Dubousset J. A technical report on the Phenix M Rod, an expandable rod linkable to the spine, ribs, or the pelvis and controllable at home by hand through the skin with a palm-size permanent magnet for the treatment of early onset scoliosis. J Child Orthop. 2009;3:145–168.

13. Miladi L, Soubeiran A, Dubousset J. New spinal growing rod expandable without surgery: preliminary results about 15 cases. In: The Final Program of the 15th IMAST, Hong Kong, 2008:110–111.

14. Soubeiran A, Miladi L, Odent T. A technical report on the Phenix M Rod, an expandable rod linkable to the spine, ribs, or the pelvis and controllable at home by hand through the skin with a palm-size permanent magnet for the treatment of scoliosis. In: The Final Program of the 15th IMAST, Hong Kong, 2008:146–147.

15. Dubousset JF. Personal communication. 2019.

16. Takaso M, Moriya H, Kitahara S, Minami S, Takahashi K, Isobe K, Yamagata M, Otsuka Y, Nakata Y, Inoue M. New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children. J Orthop Sci. 1998;3:336– 340. DOI: 10.1007/s007760050062.

17. Akbarnia BA, Mundis GM, Salary P, Walker B, Pool S, Chang A. A technical report on the Ellipse Technologies device: a remotely expandable device for non-invasive lengthening of growing rod. J Child Orthop. 2009;3:530–531.

18. Akbarnia BA, Mundis GM, Salary P, Yaszay B, Pawelek J. Innovation in growing rod technique: a study of safety and efficacy of a magnetically controlled growing rod in a porcine model. Spine. 2012;37:1109–1114. DOI: 10.1097/BRS.0b013e318240ff67.

19. Akbarnia BA, Cheung K, Nordeen H, Elsebaie H, Yazici M, Dannawi Z, Kabirian N. Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early onset scoliosis. Spine. 2013;38:665–670. DOI: 10.1097/BRS.0b013e3182773560.

20. Akbarnia BA, Pavelek JB, Cheung KM, Demirkiran G, Elsebaie HB, Emans JB, Johston CE, Mundis GM, Noordeen HM, Skaggs DL, Sponseller PD, Thompson GH, Yaszay B, Yazici M. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early onset scoliosis: a case-matched two year study. Spine Deform. 2014;2:493–497. DOI: 10.1016/j.jspd.2014.09.050.

21. Akbarbnia BA, Keskinen H, Helenius I, Panteliadis P, Nnadi C, Cheung KM, Ferguson J, Mundis GM, Pawelek J. Comparison of primary and conversion surgerywith magnetically controlled growing rods in children with early onset scoliosis (EOS). Spine J. 2016;16:S54. DOI: 10.1016/j.spinee.2016.01.051.

22. Harshavardhana NS, Noordeen N. Magnetic Growing rods. In: Early Onset Scoliosis. A Comprehensive Guide from the Oxford Meeting, ed by Nnadi C. Georg Thieme Verlag KG, 2016.

23. Hosseini P, Pawelek J, Mundis GM, Yaszay B, Ferguson J, Helenius I, Cheung KM, Demirkiran G, Alanay A, Senkoylu A, Elsebaie H, Akbarnia BA. Magnetically controlled growing rods for early onset scoliosis: a multicenter study of 23 cases with minimum 2 years follow-up. Spine. 2016;41:1456–1462. DOI: 10.1097/BRS.0000000000001561.

24. Cheung KM, Cheung JP, Samartzis D, Mak KC, Wong YW, Cheung WY, Akbarnia BA, Luk KD. Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet. 2012;379:1967–1974. DOI: 10.1016/S0140-6736(12)60112-3.

25. Akbarnia BA, Cheung KM, Demirkiran GH, Elsebaie HB, Emans JB, Johnston CE, Mundis GM, Noordeen HH, Pawelek J, Shaw M, Skaggs DL, Sponseller PD, Thompson GH, Yazici M. Traditional growing rods versus magnetically controlled growing rods in early onset scoliosis: a case-matched two year study. In: Final Program of the 48th SRS Meeting and Course, Lyon, France, 2013:228–229.

26. Dannawi Z, Altaf F, Harshavardhana NS, El Sebaie H, Noordeen H. Early results of a remotely-operated growth rod in early onset scoliosis. Bone Joint J. 2013;95:75–80. DOI: 10.1302/0301-620X.95B1.29565.

27. Stokes OM, O’Donovan EJ, Samartzis D, Bow CH, Luk KD, Cheung KM. Reducing radiation exposure in early onset scoliosis patients: novel use of ultrasonography to measure lengthening in magnetically controlled growing rods. Spine J. 2014;14:2397–2404. DOI: 10.1016/j.spinee.2014.01.039.

28. Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H. The use of ultrasound in comparison to radiography in magnetically controlled growth rods lengthening measurement: a prospective study. Eur Spine J. 2015;24:1422–1426. DOI: 10.1007/s00586-014-3589-z.

29. Ridderbusch K, Stuecker R, Rupprecht M, Kunkel P, Hagemann C. Magnetically controlled growing rod technique in 33 patients with early-onset scoliosis – preliminary results. Spine Deform. 2014;2:510. DOI: 10.1016/j.jspd.2014.09.030.

30. Nordeen MH. Masters Techniques: Magnetic growing rods. In: 49th SRS Annual Meeting and Course . Ancorage, USA, 2014:15.

31. Rolton D, Richards J, Nnadi C. Magnetic controlled growing rods versus conventional growing rod systems in the treatment of early onset scoliosis: a cost comparison. Eur Spine J. 2015;24:1457–1462. DOI: 10.1007/s00586-014-3699-7.

32. La Rosa G, Oggiano L, Ruzzini L. Magnetically controlled growing rods for the management of early-onset scoliosis: a preliminary report. J Pediatr Orthop. 2017;37:79–85. DOI: 10.1097/BPO.0000000000000597.

33. Harshavardhana NS, Fahmy A, Noordeen N. Surgical results of magnet driven growing rods (MdGR) for early-onset scoliosis (EOS) at a minimum follow-up of five years. Spine Deform. 2015;3:622. DOI: 10.1016/j.jspd.2015.09.027.

34. Cheung JP, Bow C, Samartzis D, Kwan K, Cheung KM. Frequent small distractions with a magnetically controlled growing rod for early onset scoliosis and avoidance of the law of diminishing returns. J Orthop Surg (Hong Kong). 2016;24:332–337. DOI: 10.1177/1602400312.

35. Heydar AM, Sirazi S, Bezer M. Magnetic controlled growth rods as a treatment of early onset scoliosis: early results with two patients. Spine. 2016;41:E1336–E1342. DOI: 10.1097/BRS.0000000000001614.

36. Ridderbusch K, Rupprecht M, Kunkel P, Hagemann C, Stucker R. Preliminary results of magnetically controlled growing rods for early onset scoliosis. J Pediatr Orthop. 2017;37:e575–e580. DOI: 10.1097/BPO.0000000000000752.

37. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S. Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J. 2016;16(4 Suppl):S40–S44. DOI: 10.1016/j.spinee.2015.12.099.

38. Thompson W, Thakar C, Rolton D, et al. The use of magnetically controlled growing rods to treat children with early onset scoliosis: early radiological results in 19 patients. Bone Joint J. 2016;98:1240–1247. DOI: 10.1302/0301-620X.98B9.37545.

39. Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C. Quantifying the “law of diminishing returns” in magnetically controlled growing rods. Bone Joint J. 2017;99:1658–1664. DOI: 10.1302/0301-620X.99B12.BJJ2017-0402.R2.

40. Cobanoglu M, Shsh S, Gabos P, Rogers K, Yorgova P, Neiss G, Grissom L, Mackenzie WG. Comparison of intended lengthening of magnetically controlled growing rods: ultrasound versus X-ray. J Pediatr Orthop. 2019;39:e141–e146. DOI: 10.1097/BPO.0000000000001072.

41. Kwan KY, Alanay A, Yazici M, Demirkiran G, Helenius I, Nnadi C, Ferguson J, Akbarnia BA, Cheung JPY, Cheung KMC. Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine. 2017;42:E1410–E1414. DOI: 10.1097/BRS.0000000000002297.

42. Gilday SE, Schwartz MS, Bylski-Austrow Dl, Glos DL, Schultz L, O’Hara S, Jain VV, Sturm PF. Observed length increases of magnetically controlled growing rods are lower than programmed. J Pediatr Orthop. 2018;38:e133–e137. DOI: 10.1097/BPO.0000000000001119.

43. Dahl B, Dragsted C, Ohrt-Nissen S, Andersen T, Gehrchen M. Use of a distraction-to-stall lengthening procedure in magnetically controlled growing rods: A single-center cohort study. J Orthop Surg (Hong Kong). 2018;26:2309499018779833. DOI: 10.1177/2309499018779833.

44. Samdani AF, Pahys JM, Smith J, Samuel S, Vitale M, El-Hawary R, Flynn JM, Sawyer J, Betz RR, Hwang S. Magnetic growing rods in the treatment of nonambulatory neuromuscular scoliosis; how do they compare to traditional growing systems? In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:304.

45. Lebon J, Batailler C, Wargny M, Choufani E, Violas P, Fron D, Kieffer J, Accadbled F, Cunin V, De Gauzy JS. Magnetically controlled growing rods in early onset scoliosis: a 30-case multicenter study. Eur Spine J. 2017;26:1567–1576. DOI: 10.1007/s00586-016-4929-y.

46. Bow CH, Cheung JP, Samartzis D, Kwan K, Cheung KM. Use of ultrasound to monitor distractions by magnetically controlled growing rods: a longitudinal correlation study. In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:85.

47. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, Berk H, Cheung K, Demirkiran G, Ferguson J, Greggi T, Helenius I, La Rosa G, Senkoylu A, Akbarnia BA. Implant complications after magnetic-controlled growing rods for early onset scoliosis: a multicenter retrospective review. J Pediatr Orthop. 2017;37:e588–e592. DOI: 10.1097/BPO.0000000000000803.

48. Di Silvestre M, Greggi T, Martikos K, Vommaro F, Colella G. Two staged posterior surgeries for severe idiopathic scoliosis using magnetically controlled growing rod. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:265.

49. Doany ME, Olgun ZD, Kinikli Gl, Bekmez S, Kocyigit A, Demirkiran G, Karaagaoglu AE, Yazici M. Health-related quality of life in early-onset scoliosis patients treated surgically: EOSQ scores in traditional growing rod versus magnetically controlled growing rods. Spine. 2018;43:148–153. DOI: 10.1097/BRS.0000000000002274.

50. Fahmy A, Harshavardhana NS, Noordeen HH. Evaluation of sagittal profile in ambulatory children with early-onset scoliosis (EOS) treated by magnet driven growing rods (MDGR) at two years. In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:194–195.

51. Gupta P, Morash K, Brassard F, Schattler J, January A, El-Hawary R, Roye B, Hammerberg K, Sawyer J. Magnetically controlled growing rods: sagittal plane analysis and the risk of proximal junctional kyphosis. In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:59.

52. Harshavardhana NS, Fahmy A, Noordeen HH. Surgical results of magnet driven growing rods (MDGR) for early-onset scoliosis (EOS) secondary to neuromuscular (NMS) and syndromic scoliosis (SS) at one year. In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:178–179.

53. Hickey B, Towriss C, Baxter G, Yasso S, James S, Jones A, Howes J, Davies P, Ahuja S. Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J. 2014;23 Suppl 1:S61–S65. DOI: 10.1007/s00586-013-3163-0.

54. Ihnow S, Jain V, Gilday S, McKinnon W, Sturm PF. Diminishing returns of magnetically controlled growing rod lengthenings over time. In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:40.

55. Cheung JP, Yiu KK, Samartzis D, Kwan K, Tan BB, Cheung KM. Rod lengthening with the magnetically controlled growing rod: factors influencing rod slippage and reduced gains during distractions. Spine. 2018;43:E399–E405. DOI: 10.1097/BRS.0000000000002358.

56. Cheung K, Kwan K, Samartzis D, Yiu K, Alanay A, Ferguson J, Nnadi C, Helenius IJ, Yazici M, Demirkiran G, Akbarnia BA. Effects of frequency of distraction in magnetic-controlled growing rod lengthening on outcomes and complications. Spine Deform. 2015;3:623. DOI: 10.1016/j.jspd.2015.09.030.

57. Keskinen H, Helenius I, Nnadi C, Cheung K, Ferguson J, Mundis G, Pawelek J, Akbarnia BA. Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J. 2016;25:3294–3300. DOI: 10.1007/s00586-016-4597-y.

58. Lebel DE, Sigal A, Ovadia D. Are MCGRs magical? Long-term experience of a single institute. In: Final Program of the 51st SRS Meeting and Course. Prague, Czech Republic. 2016:202–203.

59. Subramanian T, Ahmad A, Mardare DM, Kieser D, Mayers D, Nnadi C. The Oxford 5 year observational study of 31 patients with magnetically controlled growing rods (MCGR). In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:223.

60. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S. Magnetic controlled growing rod for the early onset scoliosis: a 4-year follow-up. Spine J. 2016;16(4 suppl):S34–S39. DOI: 10.1016/j.spinee.2015.12.098.

61. Yilgor C, Alanay A. Is radiographic control necessary after every lengthening of magnetically controlled growing rod? In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:86.

62. Canavese F, DiMeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4:167–174. DOI: 10.5312/wjo.v4.i4.167.

63. Bow C, Lastikka M, Yiu K, Kwan K, Helenius I, Cheung KM, Cheung JP. Comparative outcomes of monthly versus three-monthly distraction protocols for magnetically controlled growing rods. In: Final Program of the 12th International Congress n Early Onset Scoliosis. Lisbon, Portugal, 2018:39.

64. Welborn M, Baksh N, Krajbich JI. The effect of magnetically controlled growing rod lengthening on kyphosis. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:327.

65. Welborn M, Bouton D, Krajbich JI. The role of halo gravity prior to MCGR, when does correction occur? In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:24.

66. Cheung JP, Samartzis D, Cheung KM. A novel approach to gradual correction of severe spinal deformity in a pediatric patient using the magnetically controlled growing rod. Spine J. 2014;14:e7–e13. DOI: 10.1016/j.spinee.2014.01.046.

67. Koller H, Mayer M, Hempfing A, Ferraris l, Meier O. Posterior release, temporary internal distraction using magnetic rod and definitive posterior fusion for severe kyphoscoliosis in a 13-year-old AIS patient. In: Final Program of the 49th SRS Meeting and Course. Anchorage, USA, 2014:139.

68. Birkenmaier C, Wegener B, Mehrkens J, Mellcher C. Slow correction of severe adult spastic scoliosis by stepwise distraction of magnetically controlled growing rods (MCGR) and final posterior spinal fusion. In: Final Program of the 26th IMAST. Amsterdam, 2019:71–72.

69. Sankar WN, Skaggs DL, Yazici M, Johnston CE 2nd, Shah SA, Javidan P, Kadakia RV, Day TF, Akbarnia BA. Lengthening of dual growing rods and the law of diminishing returns. Spine. 2011;36:806–809. DOI: 10.1097/BRS.0b013e318214d78f.

70. Cheung JP, Bow CH, Samartzis D, et al. Magnetically controlled growing rods: does the law of diminishing returns apply? In: Final Program of the 50th SRS Meeting and Course. Minneapolis, USA, 2015:225.

71. Ihnow S, Jain V, Gilday S, McKinnon W, Sturm P. Diminishing returns of magnetically controlled growing rod lengthenings over time. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:222–223.

72. Choi E, Yaszay B, Mundis G, Hosselini P, Pawelek J, Alanay A, Berk H, Cheung K, Demirkiran G, Ferguson J, Greggi T, Helenius I, La Rosa G, Senkoylu A, Akbarnia B. Implant complications after magnetic-controlled growing rods for early onset scoliosis. Spine Deform. 2015;3:622–623. DOI: 10.1016/j.jspd.2015.09.028.

73. Hung CW, Matsumoto H, Campbell M, Vitale M, Roye D, Roye B. Magnetically controlled growing rod systems have higher hazard of adverse events compared to prosthetic rib constructs. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:222.

74. Harshavardhana NS, Fahmy A, Noordeen N. Unique device specific complications (DSC) of magnet driven growing rods (MdGR) used for early-onset scoliosis (EOS) and lessons learnt from world’s first three MdGR Graduates. In: Final Program of the 50th SRS Meeting and Course. Minneapolis, USA, 2015:250.

75. Cheung KM, Kwan K, Yiu KK, Ferguson J, Nnadi C, Alanay A, Yazici M, Demirkiran GH, Helenius IJ, Akbarnia BA. Re-operation after magnetically controlled growing rod implantation in early onset scoliosis. Spine Deform. 2015;3:621. DOI: 10.1016/j.jspd.2015.09.026.

76. Rolton D, Thakar C, Wilson-MacDonald J, Nnadi C. Radiological and clinical assessment of the distraction achieved with remotely expandable growing rods in early onset scoliosis. Eur Spine J. 2016;25 :3371–3376. DOI: 10.1007/s00586-015-4223-4.

77. Cheung JP, Cahill P, Yaszay B, Akbarnia BA, Cheung KM. Special article: update on the magnetically controlled growing rod: tips and pitfalls. J Orthop Surg (Hong Kong). 2015;23:383–390. DOI: 10.1177/230949901502300327.

78. Tan BB, Samartzis D, Bow CH, Cheung JP, Cheung KM. “Distraction failure” in magnetically controlled growing rods: prevalence and risk factors. In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:130.

79. Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M. Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J. 2016;16:e287–e291. DOI: 10.1016/j.spinee.2015.12.020.

80. Cheung JP, Yiu KK, Samartzis D, Kwan K, Cheung KM. The significance of clunking in magnetically controlled growing rod distractions: a prospective analysis of 22 patients. In: Final Program of the 52nd SRS Meeting and Course. Philadelphia, USA. 2017:276.

81. Cheung KM, Cheung JP, Kwan K, Ferguson J, Nnadi C, Alanay A, Yazici M, Demirkiran GH, Helenius IJ, Akbarnia BA. Complications of magnetically controlled growing rod surgery: multicenter study of 26 patients with medium-term followup. Spine Deform. 2014;2:511. DOI: 10.1016/j.jspd.2014.09.033.

82. Cheung KM, Kwan K, Ferguson J, Nnadi C, Alanay A, Yazici M, Demirkiran GH, Akbarnia BA. Re-Operation after Magnetically Controlled Growing Rod implantation. A review of 23 patients with minimum two-year follow-up. In: Final Program of the 49th SRS Meeting and Course. Anchorage, USA, 2014:172.

83. Roye B, Matsumoto H, Chun WH, Campbell M, Beauchamp E, Roye DP, Vitale M. Comparing risk of unplanned returned to the operating room (UPROR): magnetically controlled growing rod (MCGR) system vs prosthetic rib constructs (PRC). In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:60.

84. Bekmez S, Efendiyev A, Dede O, Demirkiran G, Ayvaz M, Yazici M. Did magnetically controlled growing rods change the game rules in early onset scoliosis? In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:287–288.

85. Varley E, Yaszay B, Pawelek J, Mundis G, Oetgen M, Sturm P, Akbarnia B. The role of traditional growing rods in the era of magnetically-controlled growing rods for the treatment of early-onset scoliosis. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:330.

86. Li Y, Graham C, Robbins C, Farley FA. Elevated serum titanium levels in children with early onset scoliosis treated with VEPTR and magnetically controlled growing rods. In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:58.

87. Aslan C, Ayik G, Olgun D, Karaokur R, Ozusta, Demirkiran G, Unal F, Yazici M. Does decreased surgical stress really improve the psychosocial health of EOS patients? A comparison of TGR and MCGR patients reveals disappointing results. In: Final Program of the 53rd SRS Meeting and Course. Bologna, Italy, 2018:225–226.

88. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: finding from the U.S. Scoliosis Cohort Study. Spine. 2000;25:2052–2063. DOI: 10.1097/00007632-200008150-00009.

89. Perez Cervera T, Lirola Criado JF, Farrington Rueda DM. Ultrasound control of magnet growing rod distraction in early onset scoliosis. Rev Espanola Cirurgia Ortop Traumatol. 2015;60:325–329. DOI: 10.1016/j.recot.2015.01.001.

90. Morris S, Upadhyay N, Hutchinson J. Use of ultrasound imaging for routine lengthening of magnetic growth rods. In: Final Program of the 50th SRS Meeting and Course. Minneapolis, USA, 2015:276.

91. Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H. The use of ultrasound in comparison to radiography in magnetically controlled growing rod lengthening measurement: a prospective study. Eur Spine J. 2015;24:1422–1426. DOI: 10.1007/s00586-014-3589-z.

92. Cheung JP, Yiu KK, Bow C, Cheung PW, Samartzis D, Cheung KM. Learning curve in monitoring magnetically controlled growing rod distractions with ultrasound. Spine. 2017;42:1289–1294. DOI: 10.1097/BRS.0000000000002114.

93. Karlen J, Riemann M. Optimization of a MCGR US-guided lengthening clinic. In: Final Program of the 12th International Congress on Early Onset Scoliosis. Lisbon, Portugal, 2018:42.

94. Srinivas S, Andre LM, Bruce CE, Trivedi J, Munigangaiah S, Davidson NT. Clinical effectiveness of distraction measurements with ultrasonography in Magnetic Controlled Growing Rods. In: Final Program of the 26th IMAST. Amsterdam, 019:67–68.

95. Budd H, Stokes OM, Hutton M. Safety and compatibility of magnetically controlled growing rods and resonance imaging: an in-vitro study. In: Final Program of the 22nd IMAST, Kuala Lumpur, Malaysia, 2015:84.

96. Woon R, Andrash LM, Noordeen HH, Morris S, Hutchinson J, Shah SA, Pawelek J, Johnston CE, Skaggs DL. Surgeon survey shows no evidence with MRI in patients with magnetically controlled growing rods (MCGR). In: Final Program of the 52nd SRS Meeting and Course. Philadelphia, USA. 2017:335.

97. Charroin C, Abelin-Genevois K, Cunin V, Berthiller J, Constant H, Kohler R, Aulagner G, Serrier H, Armoiry X. Direct costs associated with the management of progressive early onset scoliosis: estimations based on gold standard technique or with magnetically controlled growing rods. Orthop Traumatol Surg Res. 2014;100:469–474. DOI: 10.1016/j.otsr.2014.05.006.

98. Polly DW, Ackerman SJ, Schneider KB, Pawelek JB, Akbarnia B. Cost analysis of magnetically-controlled growing rods compared with traditional growing rods for early onset scoliosis in the United States. Spine Deform. 2015;3:623. DOI: 10.1016/j.jspd.2015.09.029.

99. Su AW, Milbrandt TA, Larson AN. Magnetic expansion control system achieves cost savings compared to traditional growing rods: an economic analysis. Spine Deform. 2015;3:623–624. DOI: 10.1016/j.jspd.2015.09.031.

100. Su AW, Milbrandt TA, Larson AN. Magnetic expansion control system achieves cost savings compared to traditional growing rods: an economic analysis model. Spine. 2015;40:1851–1856. DOI: 10.1097/BRS.0000000000001077.

101. Harshavardhana NS, Noordeen HH, Dormans JP. Cost analysis of magnet-driven growing rods vs. conventional growing rods for early-onset scoliosis at five years. In: Final Program of the 51st SRS Meeting and Course. Prague, Czech Republic. 2016:176.

102. Wong CK, Cheung JP, Cheung PW, Lam CL, Cheung KM. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: cost analysis from implantation till skeletal maturity. J Orthop Surg (Hong Kong). 2017;25:2309499017705022. DOI: 10.1177/2309499017705022.

103. Oetgen ME, McNulty EM, Matthews AL. Cost-effectiveness of magnetically controlled growing rods: who really benefits? Spine Deform. 2019;7:501–504. DOI: 10.1016/j.jspd.2018.09.066.

104. Torode I. The philosophy and use of the Phenix Magnetic Growing Rods in early onset scoliosis. In: Program Book of the 6th International Congress on Early Onset Scoliosis and Growing Spine. Dublin, 2012.

105. Jenks M, Craig J, Higgins J, Willits I, Barata T, Wood H, Kimpton C, Sims A. The MAGEC system for spinal lengthening in children with scoliosis: a NICE Medical Technology Gidance. Appl Health Econ Health Policy. 2014;12:587–599. DOI: 10.1007/s40258-014-0127-4.

106. Wick JM, Konze J. A magnetic approach to treating progressive early onset scoliosis. AORN J. 2012;96:163–173. DOI: 10.1016/j.aorn.2012.05.008.

107. Rushton PR, Siddique I, Crawford R, Birch N, Gibson MJ, Hutton MJ. Magnetically controlled growing rods in the treatment of early-onset scoliosis: a note of caution. Bone Joint J. 2017;99:708–713. DOI: 0.1302/0301-620X.99B6.BJJ-2016-1102.R2.

108. Malchau H. Introducing new technology: a stepwise algorithm. Spine. 2000;25:285. DOI: 10.1097/00007632-200002010-00004.

109. McCulloch P, Cook JA, Altman DG, Heneghan C, Diener MK. IDEAL framework for surgical innovations 1: the idea and development stages. BMJ. 2013;346:f3012. DOI: 10.1136/bmj.f3012.


Для цитирования:


Михайловский М.В., Альшевская А.А. Магнитно-контролируемые стержни в хирургии ранних сколиозов: обзор англоязычной литературы. "Хирургия позвоночника". 2020;17(1):25-41. https://doi.org/10.14531/ss2020.1.25-41

For citation:


Mikhaylovskiy M.V., Alshevskaya A.A. Magnetically controlled growing rods in early onset scoliosis surgery: a review of Englishlanguage literature. Hirurgiâ pozvonočnika (Spine Surgery). 2020;17(1):25-41. (In Russ.) https://doi.org/10.14531/ss2020.1.25-41

Просмотров: 378


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)