Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Comparison of pedicle screw placement using O-arm navigation and navigational templates in an animal model experiment

https://doi.org/10.14531/ss2020.4.85-93

Abstract

Objective. To perform a comparative analysis of experimental pedicle screw placement using custom-made 3D-printed navigational templates and using O-arm (cone-beam computerized tomograph, CBCT) and navigation station.

Material and Methods. The experiment was performed on five fresh anatomical specimens of the lamb thoracic and lumbar spine. In Group 1, 44 screws were inserted using O-arm and Stealth Station S7 navigation system, and in Group 2, 72 screws were inserted using 3D-printed navigational templates. The main comparison criterion was the safety of implantation assessed based on a grade (0 to 3) of cortical bone perforation on postoperative CT. The extra comparing criteria were the time of implantation and summary radiation exposure required for screw placement. In Group 2, the accuracy of implantation was analyzed by assessing the deviation (mm) of the actual screw trajectory from the planned one at the point of entry into the vertebra and at the intersection of the screw axis with the anterior cortical layer of the vertebral body (end point), and by measuring the angles between the trajectories. The results were evaluated for normal distribution and subjected to statistical analysis for paired independent groups using the Kruskal-Wallis test and Chi-square in the Statistica 10 software.

Results. Analysis of the safety revealed significant difference between the groups (p < 0.0001). In Group 2 there were not any cases of cortical bone perforation, in Group 1 (O-arm) grade 0 was registered for 28 (64 %) screws, grade 1 for 7(16 %) screws, grade 2 for 4 (9 %) screws, and grade 3 for 5 (11 %) screws. The average time of one screw placement was 81.00 (64.50; 94.00) sec in Group 1 and 40.75 (33.50; 52.25) sec in Group 2, p < 0.001. In Group 2, the mean deviation of the entry point was 0.50 (0.34; 0.87) mm, and of the end point – 1.10 (0.66; 1.93) mm. The mean angle between the planned and actual trajectories was 2.76 (0.80; 4.89) degrees in the axial plane and 2.62 (1.43; 4.35) degrees in the sagittal plane. The average design time for one template was 8.75 (8.00; 9.75) min, and 3D printing time – 60 (57; 69) min. The approximate material cost for one template printing was 45 rubles, for one anatomical specimen of lamb thoracic and lumbar spine – 390 rubles. The CT dose index (CTDI) for the O-arm was 8.99–9.01 mGy, and dose length product (DLP) for one model (3 scans) was 432 mGr ´ sm. In Group 2, there was no intraoperative X-ray control, the CTDI for preoperative CТ was 10.37–10.67 mGy, and DLP was 459–477 mGr ´ sm.

Conclusion. The results of the experiment on a lamb spine biomodel showed that pedicle screw placement with 3D custom-made navigational templates is associated with better results of the safety and the speed of implantation as compared to that with intraoperative
O-arm navigation. This justifies the 3D-printed template using in case of increased mobility of the spine during implantation, where the accuracy of CT navigation is significantly reduced. In clinical practice, these conditions correspond to transpedicular fixation of the cervical spine and screw fixation of the C1–C2 vertebrae.

About the Authors

R. A. Kovalenko
Almazov National Medical Research Centre
Russian Federation

Roman Aleksandrovich Kovalenko, MD, PhD, neurosurgeon, Neurosurgery Department No. 6

2 Akkuratova str., St. Petersburg, 197341, Russia



V. Yu. Cherebillo
Almazov National Medical Research Centre
Russian Federation

Vladislav Yuryevich Cherebillo, DMSc, Prof., scientific director of the Neurosurgery Department No. 6

2 Akkuratova str., St. Petersburg, 197341, Russia



V. A. Kashin
Almazov National Medical Research Centre
Russian Federation

Vasily Andreyevich Kashin, postgraduate student of the Department of neurosurgery

2 Akkuratova str., St. Petersburg, 197341, Russia



M. N. Kravtsov
S.M. Kirov Military Medical Academy
Russian Federation

Maksim Nikolayevich Kravtsov, MD, PhD, Lecturer of the department of general surgery

6 Academician Lebedev str., St. Petersburg, 194044, Russia



A. V. Golubin
S.M. Kirov Military Medical Academy
Russian Federation

Anton Valeryevich Golubin, senior resident of the neurosurgery clinic

6 Academician Lebedev str., St. Petersburg, 194044, Russia



References

1. Feng W, Wang W, Chen S, Wu K, Wang H. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: a systematic review and meta-analysis. Int Orthop. 2020;44:919–926. DOI: 10.1007/s00264-019-04470-3.

2. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21:247–255. DOI: 10.1007/s00586-011-2011-3.

3. Ling JM, Dinesh SK, Pang BC, Chen MW, Lim HL, Louange DT, Yu CS, Wang CME. Routine spinal navigation for thoraco-lumbar pedicle screw insertion using the O-arm three-dimensional imaging system improves placement accuracy. J Clin Neurosci. 2014;21:493–498. DOI: 10.1016/j.jocn.2013.02.034.

4. Liu YJ, Tian W, Liu B, Li Q, Hu L, Li ZY, Yuan Q, Lu YW, Sun YZ. Comparison of the clinical accuracy of cervical (C2–C7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional C-arm navigation. Chin Med J (Engl). 2010;123:2995–2998. DOI: 10.3760/cma.j.issn.0366-6999.2010.21.008.

5. Shin BJ, James AR, Njoku IU, Hartl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17:113–122. DOI: 10.3171/2012.5.spine11399.

6. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20:846–859. DOI: 10.1007/s00586-010-1577-5.

7. Cecchinato R, Berjano P, Zerbi A, Damilano M, Redaelli A, Lamartina C.

8. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial. Eur Spine J. 2019;28:1712–1723. DOI: 10.1007/s00586-019-05978-3.

9. Косулин А.В., Елякин Д.В., Лебедева К.Д., Сухомлинова А.Е., Козлова Е.А., Орехова А.Е. Применение навигационного шаблона для прохождения ножки позвонка при транспедикулярной фиксации // Педиатр. 2019. Т. 10. № 3. С. 45–50. [Kosulin AV, Elyakin DV, Lebedeva KD, SukhomLinova AE, Kozlova EA, Orekhova AE. Navigation template for vertebral pedicle passage in transpedicular screw fixation. Pediatrician (St. Petersburg). 2019;10(3):45–50. In Russian]. DOI: 10.17816/PED10345-50.

10. Косулин А.В., Елякин Д.В., Корниевский Л.А., Дарковская А.М., Булатова И.А., Пашко А.А. Применение трехуровневого навигационного шаблона при грудных полупозвонках у детей старшего возраста // Хирургия позвоночника. 2020. Т. 17. № 1. С. 54–60. [Kosulin AV, Elyakin DV, Kornievskiy LA, Darkovskaya AM, Bulatova IA, Pashko AA. Application of three-level navigation template in surgery for hemivertebrae in adolescents. Hir. Pozvonoc. 2020;17(1):54–60. In Russian]. DOI: 10.14531/ss2020.1.54-60.

11. Бурцев А.В., Павлова О.М., Рябых С.О., Губин А.В. Компьютерное 3D-моделирование с изготовлением индивидуальных лекал для навигирования введения винтов в шейном отделе позвоночника // Хирургия позвоночника. 2018. Т. 15. № 2. С.33–38. [Burtsev AV, Pavlova OM, Ryabykh SO, Gubin AV. Computer 3D-modeling of patient-specific navigational template for cervical screw insertion. Hir. Pozvonoc. 2018;15(2):33–38. In Russian]. DOI:10.14531/ss2018.2.33-38.

12. Коваленко Р.А., Кашин В.А., Черебилло В.Ю., Шарифов Р.М., Мирончук Р.Р., Акопов А.Л., Иванов В.А. Определение оптимального дизайна навигационных матриц для транспедикулярной имплантации в шейном и грудном отделах позвоночника: результаты кадавер-исследования // Хирургия позвоночника. 2019. Т. 16 № 4 С. 77–83. [Kovalenko RA, Kashin VA, Cherebillo VYu, Sharifov RM, Mironchuk RR, Akopov AL, Ivanov VA. Determination of optimal design of navigation templates for transpedicular implantation in the cervical and thoracic spine: results of cadaveric studies. Hir. Pozvonoc. 2019;16(4):77–83. In Russian]. DOI: 10.14531/ss2019.4.77-83.

13. Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine. 2011;14:532–536. DOI: 10.3171/2010.10.spine091032.

14. Costa F, Cardia A, Ortolina A, Fabio G, Zerbi A, Fornari M. Spinal navigation: standard preoperative versus intraoperative computed tomography data set acquisition for computer-guidance system: radiological and clinical study in 100 consecutive patients. Spine. 2011;36:2094–2098. DOI: 10.1097/brs.0b013e318201129d.

15. Ammirati M, Salma A. Placement of thoracolumbar pedicle screws using O-arm-based navigation: technical note on controlling the operational accuracy of the navigation system. Neurosurg Rev. 2013;36:157–162. DOI: 10.1007/s10143-012-0421-2.

16. Rivkin MA, Yocom SS. Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus. 2014;36:E7. DOI: 10.3171/2014.1.FOCUS13499.

17. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine. 2000;25:962–969. DOI: 10.1097/00007632-200004150-00011.

18. Barnes AH, Eguizabal JA, Acosta FL Jr, Lotz JC, Buckley JM, Ames CP. Biomechanical pullout strength and stability of the cervical artificial pedicle screw. Spine. 2009;34:E16–E20. DOI: 10.1097/brs.0b013e3181891772.

19. Магомедов Ш.Ш., Докиш М.Ю., Татаринцев А.П. Транспедикулярная фиксация шейного отдела позвоночника в субаксиальной зоне по методике free-hand // Хирургия позвоночника. 2018. Т. 15. № 3. С. 13–22. [Magomedov ShSh, Dokish MYu, Tatarintsev AP. Transpedicular free-hand fixation in the subaxial cervical spine. Hir. Pozvonoc. 2018;15(3):13–22. In Russian]. DOI: 10.14531/ss2018.3.13-22.

20. Алейник А.Я., Млявых С.Г., Боков А.Е. Транспедикулярная фиксация в шейном отделе позвоночника: обзор литературы и клинические данные // Хирургия позвоночника. 2017. Т. 14. № 3. С. 47–53. [Aleynik AYa, Mlyavykh SG, Bokov AE. Transpedicular screw fixation of the cervical spine: literature review and clinical data. Hir. Pozvonoc. 2017;14(3):47–53. In Russian]. DOI: 10.14531/ss2017.3.47-53.

21. Barsa P, Frohlich R, Sercl M, Buchvald P, Suchomel P. The intraoperative portable CT scanner-based spinal navigation: a viable option for instrumentation in the region of cervico-thoracic junction. Eur Spine J. 2016;25:1643–1650. DOI: 10.1007/s00586-016-4476-6.

22. Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine. 2015;40:E341–E348. DOI: 10.1097/BRS.0000000000000772.

23. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg. 2013;133:893–9. DOI: 10.1007/s00402-013-1755-0.

24. Ishikawa Y, Kanemura T, Yoshida G, Matsumoto A, Ito Z, Tauchi R, Muramoto A, Ohno S, Nishimura Y. Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine. 2011;15:472–478. DOI: 10.3171/2011.6.SPINE10809.

25. Chachan S, Bin Abd Razak HR, Loo WL, Allen JC, Shree Kumar D. Cervical pedicle screw instrumentation is more reliable with O-arm-based 3D navigation: analysis of cervical pedicle screw placement accuracy with O-arm-based 3D navigation. Eur Spine J. 2018;27:2729–2736. DOI: 10.1007/s00586-018-5585-1.

26. Theologis AA, Burch S. Safety and efficacy of reconstruction of complex cervical spine pathology using pedicle screws inserted with stealth navigation and 3D image-guided (O-Arm) technology. Spine. 2015;40:1397–1406. DOI: 10.1097/BRS.0000000000001026.

27. Lu S, Xu YQ, Lu WW, Ni GX, Li YB, Shi JH, Li DP, Chen GP, Chen YB, Zhang YZ. A novel patient-specific navigational template for cervical pedicle screw placement. Spine. 2009;34:E959–E966. DOI: 10.1097/BRS.0b013e3181c09985.

28. Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Kimura T. Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine. 2012;37:1983–1988. DOI: 10.1097/BRS.0b013e31825ab547.

29. Sugawara T, Higashiyama N, Kaneyama S, Takabatake M, Watanabe N, Uchida F, Sumi M, Mizoi K. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine. 2013;19:185–190. DOI: 10.3171/2013.4.SPINE121059.

30. Коваленко Р.А., Руденко В.В., Кашин В.А., Черебилло В.Ю., Пташников Д.А. Применение индивидуальных 3D-навигационных матриц для транспедикулярной фиксации субаксиальных шейных и верхнегрудных позвонков // Хирургия позвоночника. 2019. Т. 16. № 2. С. 35–41. [Kovalenko RA, Rudenko VV, Kashin VA, Cherebillo VYu, Ptashnikov DA. Application of patient-specific 3D navigation templates for pedicle screw fixation of subaxial and upper thoracic vertebrae. Hir. Pozvonoc. 2019;16(2):35–41. In Russian]. DOI: 10.14531/ss2019.2.35-41.

31. Коваленко Р.А., Руденко В.В., Кашин В.А., Черебилло В.Ю., Пташников Д.А. Оценка безопасности и точности имплантации винтов в С2 позвонок с применением индивидуальных 3D-навигационных матриц // Вопросы нейрохирургии им. Н.Н. Бурденко. 2020;84(2):42–50. [Kovalenko RA, Rudenko VV, Kashin VA, Cherebillo VYu, Ptashnikov DA. Assessment of the safety and accuracy of implantation of screws into the C2 vertebra using individual 3D navigation matrices. Zh Vopr Neirokhiru im N N Burdenko. 2020;84(2):42–50. In Russian]. DOI: 10.17116/neiro20208402142.

32. Sugawara T, Kaneyama S, Higashiyama N, Tamura S, Endo T, Takabatake M, Sumi M. Prospective multicenter study of a multistep screw insertion technique using patient-specific screw guide templates for the cervical and thoracic spine. Spine. 2018;43:1685–1694. DOI: 10.1097/BRS.0000000000002810.


Review

For citations:


Kovalenko R.A., Cherebillo V.Yu., Kashin V.A., Kravtsov M.N., Golubin A.V. Comparison of pedicle screw placement using O-arm navigation and navigational templates in an animal model experiment. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2020;17(4):85-93. https://doi.org/10.14531/ss2020.4.85-93



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)