Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Morphological changes in the sciatic nerve in experimental modeling of contusion injury of the spinal cord in rats

https://doi.org/10.14531/ss2021.3.36-42

Abstract

Objective. To analyze morphological and morphometric changes in the sciatic nerve of rats after the spinal cord injury.

Material and Methods. The Т9 moderately severe contusion injury of the spinal cord was simulated in 12 Wistar female rats. Functions of the pelvic limbs were assessed according to the standardized BBB scale. The animals were withdrawn from the experiment after nine and 13 weeks. Epoxy semi-thin (1 µm) sections were used to study sciatic nerve at the light-optical level.

Results. Significant recovery of pelvic limb functions was observed within four weeks after surgery, the plateau was achieved by Week 5 (9.5 ± 0.28 points according to the BBB scale), the deterioration in the motor activity was observed by Week 9 (8.67 ± 0.33), its recovery was achieved by Week 13 of the experiment (9.5 ± 0.87). After 9 and 13 weeks, reactive-destructive changes were detected in the sciatic nerve in 9 % and 8 % of nerve conductors, an increase in the number density of myelin fibers by 28 % and 27 % (p < 0.05) and myelin-free fibers by 20 % and 49 % (p < 0.05), and a decrease in axon diameters by 8 % and 10 % (p < 0.05), respectively.

Conclusions. The morphological and morphometric changes in the sciatic nerve revealed after the spinal cord injury in the form of destruction of a part of the fibers, axonal atrophy and a decrease in the proportion of large fibers negatively affect its conductive properties. The leveling of peripheral nerve damage, possibly, will accelerate the regression of the motor deficit caused by the spinal cord injury; therefore, it is necessary to develop a set of preventive measures aimed at preventing the reorganization of the peripheral nerve tissue.

About the Authors

N. V. Kubrak
National Ilizarov Medical Scientific Centre for Traumatology and Orthopaedics 6 Marii Ulyanovoy str., Kurgan, 640014, Russia
Russian Federation

junior researcher, Experimental Laboratory,



T. N. Varsegova
National Ilizarov Medical Scientific Centre for Traumatology and Orthopaedics 6 Marii Ulianovoy str., Kurgan, 640014, Russia
Russian Federation

PhD in Biology, senior researcher, Laboratory of Morphology



S. O. Ryabykh
National Ilizarov Medical Scientific Centre for Traumatology and Orthopaedics 6 Marii Ulianovoy str., Kurgan, 640014
Russian Federation

DMSc, Deputy Director for Education and Regional Relations, Head of the Clinic of Spine Pathology and Rare Diseases

 



References

1. Craig A, Guest R, Tran Y, Middleton J. Cognitive impairment and mood states after spinal cord injury. J Neurotrauma. 2017;34:1156–1163. DOI: 10.1089/neu.2016.4632.

2. Баиндурашвили А.Г., Виссарионов С.В., Белянчиков С.М., Картавенко К.А., Солохина И.Ю., Козырев А.С., Пухов А.М., Мошонкина Т.Р., Герасименко Ю.П. Комплексное лечение пациента с осложненной травмой грудного отдела позвоночника с использованием методики чрескожной электрической стимуляции спинного мозга (клиническое наблюдение) // Гений ортопедии. 2020. Т. 26, № 1. С. 79–88. [Baindurashvili AG, Vissarionov SV, Belianchikov SM, Kartavenko KA, Solokhina IYu, Kozyrev AS, Pukhov AM, Moshonkina TR, Gerasimenko YuP. Comprehensive treatment of a patient with complicated thoracic spine injury using percutaneous electrical spinal cord stimulation (case report). Genij Ortopedii. 2020;26(1):79–88. In Russian]. DOI: 10.18019/1028-4427-2020-26-1-79-88.

3. Прудникова О.Г., Качесова А.А., Рябых С.О. Реабилитация пациентов в отдаленном периоде травмы спинного мозга: метаанализ литературных данных // Хирургия позвоночника. 2019. Т. 16. № 3. С. 8–16. [Prudnikova OG, Kachesova AA, Ryabykh SO. Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data. Hir. Pozvonoc. 2019;16(3):8–16. In Russian]. DOI:10.14531/ss2019.3.8-16.

4. Couillard-Despres S, Bieler L, Vogl M. Pathophysiology of traumatic spinal cord injury. In: Neurological Aspects of Spinal Cord Injury. Weidner N., Rupp R,

5. Tansey K, eds. Switzerland: Springer International Publishing, 2017:503–528. DOI: 10.1007/978-3-319-46293-6_19.

6. Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J Spinal Cord Med. 2017;40:665–675. DOI: 10.1080/10790268.2017.1329076.

7. Zhao C, Rao JS, Pei XJ, Lei JF, Wang ZJ, Yang ZY, Li XG. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats. Neuroradiology. 2016;58:607–614. DOI: 10.1007/s00234-016-1660-7.

8. Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. DOI: 10.1038/nrdp.2017.18.

9. Ahmed AI, Lucas JD. Spinal cord injury: pathophysiology and strategies for regeneration. Orthop Trauma. 2020;34:266–271. DOI: 10.1016/j.mporth.2020.06.003.

10. Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med. 2017;21:941–954. DOI: 10.1111/jcmm.13034.

11. Kozlowski P, Raj D, Liu J, Lam C, Yung AC, Tetzlaff W. Characterizing white matter damage in rat spinal cord with quantitative MRI and histology. J Neurotrauma. 2008;25:653–676. DOI: 10.1089/neu.2007.0462.

12. Sachdeva R, Hutton G, Marwaha AS, Krassioukov AV. Morphological maladaptations in sympathetic preganglionic neurons following an experimental high-thoracic spinal cord injury. Exp Neurol. 2020;327:113235. DOI: 10.1016/j.expneurol.2020.113235.

13. Шелепа Е.Д., Шаповалова Е.Ю., Мостюк Е.М. Морфофункциональная характеристика нервных элементов и гемомикроциркуляторного русла узлов симпатического ствола собак в ранние сроки после экспериментального повреждения спинного мозга // Крымский журнал экспериментальной и клинической медицины. 2015. Т. 5. № 1 (17). С. 60–62. [Sheliepa YD, Shapovalova YYu, Mostiuk EM. Morphofunctional characteristics of nervous cells and bloodmicrocirculation of the sympathetic ganglia of dogs in the early periods after experimantal spinal cord injury. Crimea Journal of Experimental and Clinical Medicine. 2015;5(1):60–62. In Russian].

14. Scelsi R. Skeletal muscle pathology after spinal cord injury: our 20 year experience and results on skeletal muscle changes in paraplegics, related to functional rehabilitation. Basic Appl Myol. 2001;11:75–85.

15. Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci. 2010;1211:66–84. DOI: 10.1111/j.1749-6632.2010.05806.x.

16. Wen J, Sun D, Tan J, Young W. A consistent, quantifiable, and graded rat lumbosacral spinal cord injury model. J Neurotrauma. 2015;32:875–892. DOI: 10.1089/neu.2013.3321.

17. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. 1911;LVII:878–880. DOI:10.1001/jama.1911.04260090100008.

18. Erbayraktar Z, Gökmen N, Yilmaz O, Erbayraktar S. Experimental traumatic spinal cord injury. Methods Mol Biol. 2013;982:103–112. DOI: 10.1007/978-1-62703-308-4_6.

19. Onifer SM, Rabchevsky AG, Scheff SW. Rat models of traumatic spinal cord injury to assess motor recovery. ILAR J. 2007;48:385–395. DOI: 10.1093/ilar.48.4.385.

20. Губин А.В., Прудникова О.Г., Бурцев А.В., Хомченков М.В., Котельников А.О. Дренирование послеоперационных ран в хирургии позвоночника // Гений ортопедии. 2017. Т. 23. № 2. С. 180–186. [Gubin AV, Prudnikova OG, Burtsev AV, Khomchenkov MV, Kotel’nikov AO. Role of postoperative wound drains in spinal surgery. Genij Ortopedii. 2017;23(2):180–186. In Russian]. DOI: 10.18019/1028-4427-2017-23-2-180-186.

21. Кубрак Н.В., Краснов В.В. Осложнения после моделирования контузионной травмы спинного мозга у крыс // Успехи современного естествознания. 2015. № 9. Ч. 3. С. 439–441. [Kubrak NV, Krasnov VV. Complications after modeling contusion trauma of the spinal cord in rats. Advances in Current Natural Sciences. 2015;9(3):

22. –441. In Russian].

23. Смекаленков О.А., Пташников Д.А., Божкова С.А., Михайлов Д.А., Масевнин С.В., Заборовский Н.С., Лапаева О.А. Факторы риска развития глубокой инфекции области хирургического вмешательства после операций на позвоночнике // Гений ортопедии. 2019. Т. 25. № 2. С. 219–225. [Smekalenkov OA, Ptashnikov DA, Bozhkova SA, Mikhailov DA, Masevnin SV, Zaborovskii NS, Lapaeva OA. Risk factors for deep infection in the surgical site after spinal operations. Genij Ortopedii, 2019;25(2):219–225. In Russian]. DOI: 10.18019/1028-4427-2019-25-2-219-225.

24. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. DOI: 10.1089/neu.1995.12.1.

25. Патент на промышленный образец № 112738. Набор страниц бланка для анализа выраженности неврологического дефицита у животных после травмы спинного мозга // Кубрак Н.В., Краснов В.В. № 2018500165; заявл. 16.01.2018; опубл. 25.12.2018, Бюл. № 1. [Kubrak NV, Krasnov VV. A set of pages of the form for the analysis of the severity of neurological deficit in animals after spinal cord injury: Industrial Design Patent No. RU 112738. Appl. 16.01.2018; publ. 25.12.2018. Bul. No. 1. In Russian].

26. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109. DOI: 10.1186/1742-2094-8-109.

27. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110. DOI: 10.1186/1742-2094-8-110.

28. Живолупов С.А., Рашидов Н.А., Онищенко Л.С. Ретроградные изменения в спинном мозге крыс после острой компрессионно-ишемической невропатии седалищного нерва // Вестник Российской военно-медицинской академии. 2012. № 4(40). С. 156–162. [Zhivolupov SA, Rashidov NA, Onischenko LS. Retrograde changes in spinal cord of rats after acute compression-ischemic neuropathy of sciatic nerve. Bulletin of the Russian Military Medical Academy. 2012;(4):156–162. In Russian].

29. Block F, Dihne M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol. 2005;75:342–365. DOI: 10.1016/j.pneurobio.2005.03.004.

30. Kilic M, Aydin MD, Demirci E, Kilic B, Yilmaz I, Tanriverdi O, Kanat A. Unpublished neuropathologic mechanism behind the muscle weakness/paralysis and gait disturbances induced by sciatic nerve degeneration after spinal subarachnoid hemorrhage: an experimental study. World Neurosurg. 2018;119:e1029–e1034. DOI: 10.1016/j.wneu.2018.08.054.

31. Althagafi А, Nadi М. Acute Nerve Injury. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

32. Шилкин В.В., Абакшина М.Н. Структурные проявления регенерации нервных волокон после пересечения и шва нерва. Морфология. 2009. Т. 136. № 4. С. 156b. [Shilkin VV, Abakshina MN. Structural manifestations of nerve fiber regeneration after transection and suture of a nerve. Morfologiya. 2009;136(4):156b. In Russian]

33. Щудло Н.А. Морфологические особенности регенерации поврежденного нерва в условиях дозированного растяжения // Гений ортопедии. 2006. № 2. С. 89–94. [Chtchoudlo NA. The morphologic details of the regeneration of the nerve injured under graduated extension. Genij Ortopedii. 2006;(2):89–94. In Russian].


Review

For citations:


Kubrak N.V., Varsegova T.N., Ryabykh S.O. Morphological changes in the sciatic nerve in experimental modeling of contusion injury of the spinal cord in rats. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2021;18(3):36-42. https://doi.org/10.14531/ss2021.3.36-42



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)