Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Smartphone-assisted augmented reality technology for preoperative planning in spine surgery

https://doi.org/10.14531/ss2021.3.94-99

Abstract

Objective. To present a virtual three-dimensional model of pathologically altered segments of the patient’s spine and to analyze the results of its application when planning a surgical intervention in the smartphone-assisted augmented reality.

Material and Methods. A three-dimensional modeling of the target area of the intended surgical site was performed based on computed tomography data of five patients with various spinal deformities. A smartphone application has been developed that allows displaying a three-dimensional object of the intended surgical site in the form of augmented reality.

Results. The created virtual three-dimensional models were successfully used in five cases for preoperative planning and simulation training before surgery, which allowed to see in detail the anatomical features of the spine, the location of vascular structures when contrasting them, and to plan the direction of the screws. The potential of using augmented reality in clinical practice was demonstrated.

Conclusion. The advantages of the smartphone-assisted augmented reality technology for preoperative planning in spine surgery are the simplicity of creating a computer model, the possibility for a surgeon to use a three-dimensional model for orientation in complex anatomical zone at any time of surgery, and the reduction in the risk of technical errors.

About the Authors

E. V. Kovalev
Gomel Regional Clinical Hospital 5 Bratjev Lizyukovykh str., Gomel, 246029, Republik of Belarus
Russian Federation

neurosurgeon



S. I. Kirilenko
Gomel Regional Clinical Hospital, 5 Bratjev Lizyukovykh str., Gomel, 246029, Republik of Belarus
Russian Federation

MD, PhD, neurosurgeon



A. N. Mazurenko
Republican Scientific and Practical Centre for Traumatology and Orthopedics 60 (site 4) Leytenanta Kizhevatova str., Minsk, 220024, Republik of Belarus
Russian Federation

MD, PhD, neurosurgeon, assistant professor, doctoral student, Head of Laboratory for vertebrae and spinal cord injuries, neurotraumatologist

 



A. E. Filiustin
Republican Scientific and Practical Center for Radiation Medicine and Human Ecology 290 Ilyicha str., Gomel, 246040, Republik of Belarus
Russian Federation

radiologist, Head of the Department of Radiation Diagnostics

 



V. V. Dubrovsky
Институт механики металлополимерных систем им. В.А. Белого Республика Беларусь, 246050, Гомель, ул. Кирова, 32а
Russian Federation

researcher, Institute of Mechanics of Metal-Polymer Systems n.a. V.A. Beliy, 32a Kirova str., Gomel, 246050, Republik of Belarus



References

1. Lovo EE, Quintana JC, Puebla MC, Torrealba G, Santos JL, Lira IH, Tagle P. A novel. inexpensive method of image coregistration for applications in image-guided surgery using augmented reality. Neurosurgery. 2007;60(4 Suppl 2):366–372. DOI: 10.1227/01.NEU.0000255360.32689.FA.

2. Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty Fifth Hawaii International Conference on System Sciences, Kauai, HI, USA, Feb 7–10, 1992: Vol. 2. P. 659–669. DOI: 10.1109/HICSS.1992.183317.

3. Всемирное исследование Digital IQ за 2017 год. Цифровое десятилетие. В ногу со временем. [Electronic resource]. https://www.pwc.ru/ru/publications/globaldigital-iq-survey-rus.pdf (дата обращения: 10.11.2020). [2017 Global Digital IQ® Survey. A decade of digital. Keeping pace with transformation. [Electronic resource]. https://www.pwc.ru/ru/publications/globaldigital-iq-survey-rus.pdf. Date of access: 10.11.2020].

4. Leger E, Reyes J, Drouin S, Popa T, Hall JA, Collins DL, Kersten-Oertel M. MARIN: an open-source mobile augmented reality interactive neuronavigation system. Int J Comput Assist Radiol Surg. 2020;15:1013–1021. DOI: 10.1007/s11548-020-02155-6.

5. Кравцов А.А., Лойко В.И. Совершенствование пользовательского интерфейса визуализации трехмерных объектов при помощи технологии дополненной реальности // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2014. № 100. С. 431–445. [Kravtsov AA, Loiko VI. Improving three-dimensional object visualization user interface with augmented reality technology. Scientific Journal of KubSAU. 2014;(100):

6. –1420. In Russian].

7. Deng W, Li F, Wang M, Song Z. Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotact Funct Neurosurg. 2014;92:17–24. DOI: 10.1159/000354816.

8. Hou Y, Ma L, Zhu R, Chen X, Zhang J. A low-cost iPhone-assisted augmented reality solution for the localization of intracranial lesions. PLoS ONE. 2016;11:e0159185. DOI: 10.1371/journal.pone.0159185.

9. 3D Slicer. [Electronic resource]. URL: https://www.slicer.org (дата обращения: 10.11.2020). [3D Slicer. [Electronic resource]. URL: https://www.slicer.org. Date of access: 10.11.2020].

10. Ungi T, Lasso A, Fichtinger G. Open-source platforms for navigated image-guided interventions. Med Image Anal. 2016;33:181–186. DOI: 10.1016/j.media.2016.06.011.

11. Blender [Electronic resource]. URL: https://www.blender.org/download (дата обращения: 10.11.2020). [Blender [Electronic resource]. URL: https://www.blender.org/download. Date of access: 10/11/2020].

12. Vuforia [Electronic resource]. URL: https://developer.vuforia.com (дата обращения: 10.11.2020). [Vuforia [Electronic resource]. URL: https://developer.vuforia.com. Date of access: 10.11.2020].

13. Perez-Pachon L, Poyade M, Lowe T, Groning F. Image overlay surgery based on augmented reality: a systematic review. In: Rea P.M. (ed). Biomedical Visualisation. Advances in Experimental Medicine and Biology, Vol 1320. Springer, Cham, 2020:175–195. DOI: 10.1007/978-3-030-47483-6_10.

14. Unity [Electronic resource]. URL: https://unity.com/ru (дата обращения: 10.11.2020). [Unity [Electronic resource]. URL: https://unity.com/ru. Date of access 10.11.2020].

15. Guha D, Alotaibi NM, Nguyen N, Gupta S, McFaul C, Yang VXD. Augmented reality in neurosurgery: a review of current concepts and emerging applications. Can J Neurol Sci. 2017;44:235–245. DOI: 10.1017/cjn.2016.443.

16. Watanabe E, Satoh M, Konno T, Hirai M, Yamaguchi T. The trans-visible navigator: a see-through neuronavigation system using augmented reality. World Neurosurg. 2016;87:399–405. DOI: 10.1016/j.wneu.2015.11.084.

17. Aly O. Assisting vascular surgery with smartphone augmented reality. Cureus. 2020;12:e8020. DOI: 10.7759/cureus.8020.

18. Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique, J Neurosurg. 2015;123:206–211. DOI: 10.3171/2014.9.JNS141001.

19. Zhu M, Liu F, Chai G, Pan JJ, Jiang T, Lin L, Xin Y, Zhang Y, Li Q. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery. Sci Rep. 2017;7:42365. DOI: 10.1038/srep42365.


Review

For citations:


Kovalev E.V., Kirilenko S.I., Mazurenko A.N., Filiustin A.E., Dubrovsky V.V. Smartphone-assisted augmented reality technology for preoperative planning in spine surgery. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2021;18(3):94-99. https://doi.org/10.14531/ss2021.3.94-99



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)