Preview

"Хирургия позвоночника"

Расширенный поиск

Технология ускоренного восстановления в спинальной хирургии у детей и подростков: систематический обзор литературы

https://doi.org/10.14531/ss2021.4.6-27

Полный текст:

Аннотация

Цель исследования. Систематический обзор литературы, рассматривающей применение технологии ускоренного восстановления (ERAS) после операции в спинальной хирургии детей и подростков, для определения существующих доказательств и эффективности внедрения ERAS в клиническую практику.
Материал и методы. Авторы провели систематический обзор литературы по ERAS в хирургии позвоночника и спинного мозга у детей и подростков, отобранной в базах данных медицинской литературы и поисковых ресурсов PUBMED/MEDLINE, Google Scholar, Cochrane Library и eLibrary согласно рекомендациям PRISMA и критериям включения и исключения PICOS.
Результаты. Проанализировано 12 публикаций, содержащих информацию о лечении 2145 детей, средний возраст которых составил 14,0 лет (от 7,2 до 16,1). В рассматриваемых публикациях среднее количество ключевых элементов программы ERAS составило 9 (от 2 до 20), а всего выделено 23 элемента, которые применяются в спинальной хирургии у детей и подростков. Наиболее часто применяемыми элементами стали предоперационное обучение и консультирование, профилактика инфекционных осложнений и кишечной непроходимости, мультимодальная анальгезия, отказ от рутинного использования дренажей, назогастральных
зондов и мочевых катетеров, стандартизированный протокол анестезии, ранняя мобилизация и энтеральная нагрузка. Внедрение в клиническую практику ERAS-протокола позволило, по сравнению с группой контроля, снизить уровень осложнений на 8,2 % (от 2 до 19 %), объем кровопотери – на 230 мл (от 75 до 427 мл), время операции – на 83 мин (от 23 до 144 мин), сроки госпитализации – на 1,5 дня (от 0,5 до 3 сут) и общую стоимость лечения – на 2258,5 доллара (от 860 до 5280 долларов). ERAS-программа была реализована в детских клиниках США (75 %), Франции (8 %) и Канады (17 %).
Заключение. По данным проведенного систематического обзора литературы мы пришли к мнению, что технология ускоренного восстановления после операции (ERAS) является многообещающей технологией, улучшающей результаты хирургического лечения и применимой в детской практике. Существует ощутимая нехватка опубликованных исследований, оценивающих внедрение ERAS в детскую хирургическую практику в целом, и в хирургии позвоночника в частности, в связи с чем требуются дальнейшие проспективные рандомизированные исследования для оценки ERAS в спинальной хирургии детей и подростков.

Об авторах

А. П. Сайфуллин
Приволжский исследовательский медицинский университет Россия, 603005, Нижний Новгород, пл. Минина и Пожарского, 10/1
Россия

нейрохирург-ординатор



А. Е. Боков
Приволжский исследовательский медицинский университет Россия, 603005, Нижний Новгород, пл. Минина и Пожарского, 10/1
Россия

канд. мед. наук, заведующий отделением онкологии и нейрохирургии



А. Я. Алейник
Приволжский исследовательский медицинский университет Россия, 603005, Нижний Новгород, пл. Минина и Пожарского, 10/1
Россия

канд. мед. наук, нейрохирург отделения онкологии и нейрохирургии



Ю. А. Исраелян
Приволжский исследовательский медицинский университет Россия, 603005, Нижний Новгород, пл. Минина и Пожарского, 10/1
Россия

канд. мед. наук, доцент кафедры медицинской реабилитации



С. Г. Млявых
Приволжский исследовательский медицинский университет Россия, 603005, Нижний Новгород, пл. Минина и Пожарского, 10/1
Россия

канд. мед. наук, заведующий кафедрой травматологии, ортопедии и нейрохирургии им. М.В. Колокольцева, руководитель
Института травматологии и ортопедии



Список литературы

1. Garin C. Enhanced recovery after surgery in pediatric orthopedics (ERAS-PO). Orthop Traumatol Surg Res. 2020;106(1S):S101–S107. DOI: 10.1016/j.otsr.2019.05.012.

2. Debono B, Wainwright TW, Wang MY, Sigmundsson FG, Yang MMH, Smid-Nanninga H, Bonnal A, Le Huec JC, Fawcett WJ, Ljungqvist O, Lonjon G, de Boer HD. Consensus statement for perioperative care in lumbar spinal fusion: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Spine J. 2021;21:729-752. DOI: 10.1016/j.spinee.2021.01.001.

3. Liu VX, Rosas E, Hwang J, Cain E, Foss-Durant A, Clopp M, Huang M, Lee DC, Mustille A, Kipnis P, Parodi S. Enhanced recovery after surgery program implementation in 2 surgical populations in an integrated health care delivery system. JAMA Surg. 2017;152:e171032. DOI: 10.1001/jamasurg.2017.1032.

4. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152:292–298. DOI: 10.1001/jamasurg.2016.4952.

5. George JA, Koka R, Gan TJ, Jelin E, Boss EF, Strockbine V, Hobson D, Wick EC, Wu CL. Review of the enhanced recovery pathway for children: perioperative anesthetic considerations. Can J Anaesth. 2018;65:569–577. DOI: 10.1007/s12630-017-1042-6.

6. Rove KO, Edney JC, Brockel MA. Enhanced recovery after surgery in children: Promising, evidence-based multidisciplinary care. Paediatr Anaesth. 2018;28:482–492. DOI: 10.1111/pan.13380.

7. Licina A, Silvers A, Laughlin H, Russell J, Wan C. Proposed pathway for patients undergoing enhanced recovery after spinal surgery: protocol for a systematic review. Syst Rev. 2020;9:39. DOI: 10.1186/s13643-020-1283-2.

8. Venkata HK van Dellen JR. A perspective on the use of an enhanced recovery program in open, non-instrumented day surgery for degenerative lumbar and cervical spinal conditions. J Neurosurg Sci. 2018;62:245–254. DOI: 10.23736/S0390-5616.16.03695-x.

9. Dietz N, Sharma M, Adams S, Alhourani A, Ugiliweneza B, Wang D, Nino M, Drazin D, Boakye M. Enhanced Recovery After Surgery (ERAS) for spine surgery: a systematic review. World Neurosurg. 2019;130:415–426. DOI: 10.1016/j.wneu.2019.06.181.

10. Debono B, Sabatier P, Garnault V, Hamel O, Bousquet P, Lescure JP, Plas JY. Outpatient lumbar microdiscectomy in France: from an economic imperative to a clinical standard - an observational study of 201 cases. World Neurosurg. 2017;106:891–897. DOI: 10.1016/j.wneu.2017.07.065.

11. Carr DA, Saigal R, Zhang F, Bransford RJ, Bellabarba C, Dagal A. Enhanced perioperative care and decreased cost and length of stay after elective major spinal surgery. Neurosurg Focus. 2019;46:E5. DOI: 10.3171/2019.1.FOCUS18630.

12. Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth. 1997;78:606–617. DOI: 10.1093/bja/78.5.606.

13. Grasu RM, Cata JP, Dang AQ, Tatsui CE, Rhines LD, Hagan KB, Bhavsar S, Raty SR, Arunkumar R, Potylchansky Y, Lipski I, Arnold BA, McHugh TM, Bird JE, Rodriguez-Restrepo A, Hernandez M, Popat KU. Implementation of an Enhanced Recovery After Spine Surgery program at a large cancer center: a preliminary analysis. J Neurosurg Spine. 2018;29:588–598. DOI: 10.3171/2018.4.SPINE171317.

14. Modrzyk A, Pasierbek MJ, Korlacki W, Grabowski A. Introducing enhanced recovery after surgery protocol in pediatric surgery. Adv Clin Exp Med. 2020;29:937–942. DOI: 10.17219/acem/121931.

15. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. DOI: 10.1371/journal.pmed.1000097.

16. DeVries Z, Barrowman N, Smit K, Mervitz D, Moroz P, Tice A, Jarvis JG. Spine Deform. 2020;8:1223–1229. DOI: 10.1007/s43390-020-00146-w.

17. Fletcher ND, Shourbaji N, Mitchell PM, Oswald TS, Devito DP, Bruce RW. Clinical and economic implications of early discharge following posterior spinal fusion for adolescent idiopathic scoliosis. J Child Orthop. 2014;8:257–263. DOI: 10.1007/s11832-014-0587-y.

18. Fletcher ND, Andras LM, Lazarus DE, Owen RJ, Geddes BJ, Cao J, Skaggs DL, Oswald TS, Bruce RW Jr. Use of a novel pathway for early discharge was associated with a 48 % shorter length of stay after posterior spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop. 2017;37:92–97. DOI: 10.1097/BPO.0000000000000601.

19. Fletcher ND, Murphy JS, Austin TM, Bruce RW Jr, Harris H, Bush P, Yu A, Kusumoto H, Schmitz M, Devito DP, Fabregas JA, Miyanji F. Short term outcomes of an enhanced recovery after surgery (ERAS) pathway versus a traditional discharge pathway after posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform. 2021. DOI: 10.1007/s43390-020-00282-3.

20. Muhly WT, Sankar WN, Ryan K, Norton A, Maxwell LG, DiMaggio T, Farrell S, Hughes R, Gornitzky A, Keren R, McCloskey JJ, Flynn JM. Rapid recovery pathway after spinal fusion for idiopathic scoliosis. Pediatrics. 2016;137:e20151568. DOI: 10.1542/peds.2015-1568.

21. Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform. 2016;4:288–295. DOI: 10.1016/j.jspd.2016.01.001.

22. Julien-Marsollier F et al. Enhanced recovery after surgical correction of adolescent idiopathic scoliosis. Paediatr Anaesth. 10 2020;30:1068–1076. DOI: 10.1111/pan.13988.

23. Rao RR, Hayes M, Lewis C, Hensinger RN, Farley FA, Li Y, Caird MS. Mapping the road to recovery: shorter stays and satisfied patients in posterior spinal fusion. J Pediatr Orthop. 2017;37:e536–e542. DOI: 10.1097/BPO.0000000000000773.

24. Raudenbush BL, Gurd DP, Goodwin RC, Kuivila TE, Ballock RT. Cost analysis of adolescent idiopathic scoliosis surgery: early discharge decreases hospital costs much less than intraoperative variables under the control of the surgeon. J Spine Surg. 2017;3:50–57. DOI: 10.21037/jss.2017.03.11.

25. Sanders AE, Andras LM, Sousa T, Kissinger C, Cucchiaro G, Skaggs DL. Accelerated discharge protocol for posterior spinal fusion patients with adolescent idiopathic scoliosis decreases hospital postoperative charges 22. Spine. 2017;42:92–97. DOI: 10.1097/BRS.0000000000001666.

26. Bellaire LL, Bruce RW Jr, Ward LA, Bowman CA, Fletcher ND. Use of an accelerated discharge pathway in patients with severe cerebral palsy undergoing posterior spinal fusion for neuromuscular scoliosis. Spine Deform. 2019;7:804–811. DOI: 10.1016/j.jspd.2019.02.002.

27. Shao B, Tariq AA, Goldstein HE, Alexiades NG, Mar KM, Feldstein NA, Anderson RCE, Giordano M. Opioid-sparing multimodal analgesia after selective dorsal rhizotomy. Hosp Pediatr. 2020;10:84–89. DOI: 10.1542/hpeds.2019-0016.

28. Pennington Z, Cottrill E, Lubelski D, Ehresman J, Lehner K, Groves ML, Sponseller P, Sciubba DM. Clinical utility of enhanced recovery after surgery pathways in pediatric spinal deformity surgery: systematic review of the literature. J Neurosurg Pediatr. 2020;27:225–238. DOI: 10.3171/2020.7.PEDS20444.

29. Shinnick JK, Short HL, Heiss KF, Santore MT, Blakely ML, Raval MV. Enhancing recovery in pediatric surgery: a review of the literature. J Surg Res. 2016;202:165–176. DOI: 10.1016/j.jss.2015.12.051.

30. Smith I, Kranke P, Murat I, Smith A, O'Sullivan G, Soreide E, Spies C, in't Veld B. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28:556–569. DOI: 10.1097/EJA.0b013e3283495ba1.

31. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falk-Ytter Y, Alonso-Coello P, Schunemann HJ. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926. DOI: 10.1136/bmj.39489.470347.AD.

32. Rove KO, Brockel MA, Saltzman AF, Donmez MI, Brodie KE, Chalmers DJ, Caldwell BT, Vemulakonda VM, Wilcox DT. Prospective study of enhanced recovery after surgery protocol in children undergoing reconstructive operations. J Pediatr Urol. 2018;14:252.e1–252.e9. DOI: 10.1016/j.jpurol.2018.01.001.

33. Lee CS, Merchant S, Chidambaran V. Postoperative pain management in pediatric spinal fusion surgery for idiopathic scoliosis. Paediatr Drugs. 2020;22:575–601. DOI: 10.1007/s40272-020-00423-1.

34. Corniola MV, Debono B, Joswig H, Lemee JM, Tessitore E. Enhanced recovery after spine surgery: review of the literature. Neurosurg Focus. 2019;46:E2. DOI: 10.3171/2019.1.FOCUS18657.

35. Tong Y, Fernandez L, Bendo JA, Spivak JM. Enhanced recovery after surgery trends in adult spine surgery: a systematic review. Int J Spine Surg. 2020;14:623–640. DOI: 10.14444/7083.

36. Master DL, Poe-Kochert C, Son-Hing J, Armstrong DG, Thompson GH. Wound infections after surgery for neuromuscular scoliosis: risk factors and treatment outcomes. Spine. 2011;36:E179–185. DOI: 10.1097/BRS.0b013e3181db7afe.

37. Omeis IA, Dhir M, Sciubba DM, Gottfried ON, McGirt MJ, Attenello FJ, Wolinsky JP, Gokaslan ZL. Postoperative surgical site infections in patients undergoing spinal tumor surgery: incidence and risk factors. Spine. 2011;36:1410–1419. DOI: 10.1097/BRS.0b013e3181f48fa9.

38. Subramanyam R, Muhly WT, Goobie SM. Enhanced recovery: The evolution of pediatric spinal fusion care. Paediatr Anaesth. 2020;30:1066–1067. DOI: 10.1111/pan.13976.

39. Burgess LC, Arundel J, Wainwright TW. The effect of preoperative education on psychological, clinical and economic outcomes in elective spinal surgery: a systematic review. Healthcare (Basel). 2019;7:48. DOI: 10.3390/healthcare7010048.

40. Fortier MA, Chorney JM, Rony RY, Perret-Karimi D, Rinehart JB, Camilon FS, Kain ZN. Children's desire for perioperative information. Anesth Analg. 2009;109:1085–1090. DOI: 10.1213/ane.0b013e3181b1dd48.

41. Chorney JM, Kain ZN. Family-centered pediatric perioperative care. Anesthesiology. 2010;112:751–755. DOI: 10.1097/ALN.0b013e3181cb5ade.

42. Epstein NE. Predominantly negative impact of diabetes on spinal surgery: A review and recommendation for better preoperative screening. Surg Neurol Int. 2017;8:107. DOI: 10.4103/sni.sni_101_17.

43. Nouri A, Matur A, Pennington Z, Elson N, Ahmed AK, Huq S, Patel K, Jeong W, Nasser R, Tessitore E, Sciubba D, Cheng JS. Prevalence of anemia and its relationship with neurological status in patients undergoing surgery for degenerative cervical myelopathy and radiculopathy: A retrospective study of 2 spine centers. J Clin Neurosci. 2020;72:252–257. DOI: 10.1016/j.jocn.2019.11.027.

44. Kansagra AJ, Stefan MS. Preoperative anemia: evaluation and treatment. Anesthesiol Clin. 2016;34:127–141. DOI: 10.1016/j.anclin.2015.10.011.

45. Mesfin FB, Hoang S, Ortiz Torres M, Ngnitewe Massa'a R, Castillo R. Retrospective data analysis and literature review for a development of enhanced recovery after surgery pathway for anterior cervical discectomy and fusion. Cureus. 2020;12:e6930. DOI: 10.7759/cureus.6930.

46. Hofler RC, Swong K, Martin B, Wemhoff M, Jones GA. Risk of pseudoarthrosis after spinal fusion: analysis from the Healthcare Cost and Utilization Project. World Neurosurg. 2018;120:e194–e202. DOI: 10.1016/j.wneu.2018.08.026.

47. Jackson KL 2nd, Devine JG. The effects of smoking and smoking cessation on spine surgery: a systematic review of the literature. Global Spine J. 2016;6:695–701. DOI: 10.1055/s-0036-1571285.

48. Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures: An Updated Report by the American Society of Anesthesiologists Task Force on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Anesthesiology. 2017;126:376–393. DOI: 10.1097/ALN.0000000000001452.

49. Bohl DD, Shen MR, Mayo BC, Massel D,H, Long WW, Modi KD, Basques BA, Singh K. Malnutrition predicts infectious and wound complications following posterior lumbar spinal fusion. Spine. 2016;41:1693–1699. DOI: 10.1097/BRS.0000000000001591.

50. Wang P, Wang Q, Kong C, Teng Z, Li Z, Zhang S, Sun W, Feng M, Lu S. Enhanced recovery after surgery (ERAS) program for elderly patients with short-level lumbar fusion. J Orthop Surg Res. 2020;15:299. DOI: 10.1186/s13018-020-01814-3.

51. Holubar SD, Hedrick T, Gupta R, Kellum J, Hamilton M, Gan TJ, Mythen MG, Shaw AD, Miller TE. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on prevention of postoperative infection within an enhanced recovery pathway for elective colorectal surgery. Perioper Med (Lond). 2017;6:4. DOI: 10.1186/s13741-017-0059-2.

52. Liu B, Liu S, Wang Y, Zhao L, Zheng T, Chen L, Zhang Y, Xue Y, Lu D, Ma T, Zhao B, Gao G, Qu Y, He S. Enhanced recovery after intraspinal tumor surgery: a single-institutional randomized controlled study. World Neurosurg. 2020;136:e542–e552. DOI: 10.1016/j.wneu.2020.01.067.

53. Olsen U, Brox JI, Bjork IT. Preoperative bowel preparation versus no preparation before spinal surgery: A randomised clinical trial. Int J Orthop Trauma Nurs. 2016;23:3–13. DOI: 10.1016/j.ijotn.2016.02.001.

54. Li J, Li H, XvZK, Wang J, Yu QF, Chen G, Li FC, Ren Y, Chen QX. Enhanced recovery care versus traditional care following laminoplasty: A retrospective case-cohort study. Medicine (Baltimore). 2018;97:e13195. DOI: 10.1097/MD.0000000000013195.

55. Floccari LV, Milbrandt TA. Surgical site infections after pediatric spine surgery. Orthop Clin North Am. 2016;47:387–394. DOI: 10.1016/j.ocl.2015.09.001.

56. Ryan SL, Sen A, Staggers K, Luerssen TG, Jea A. A standardized protocol to reduce pediatric spine surgery infection: a quality improvement initiative. J Neurosurg Pediatr. 2014;14:259–265. DOI: 10.3171/2014.5.PEDS1448.

57. Gaulton TG, Wunsch H, Gaskins LJ, Leonard CE, Hennessy S, Ashburn M, Brensinger C, Newcomb C, Wijeysundera D, Bateman BT, Bethell J, Neuman MD. Preoperative sedative-hypnotic medication use and adverse postoperative outcomes. Ann Surg. 2021;274:e108–e114. DOI: 10.1097/SLA.0000000000003556.

58. Groot OQ, Ogink PT, Paulino Pereira NR, Ferrone ML, Harris MB, Lozano-Calderon SA, Schoenfeld AJ, Schwab JH. High risk of symptomatic venous thromboembolism after surgery for spine metastatic bone lesions: a retrospective study. Clin Orthop Relat Res. 2019;477:1674–1686. DOI: 10.1097/CORR.0000000000000733.

59. Fidelia I, Lamba N, Papatheodorou SI, Yunusa I, O'Neil K, Chun S, Wilson J, Maher T, Tafel I, Smith TR, Aglio LS, Mekary RA, Zaidi HA. Adult spinal deformity surgery: a systematic review of venous thromboprophylaxis and incidence of venous thromboembolic events. Neurosurg Rev. 2020;43:923–930. DOI: 10.1007/s10143-019-01095-3.

60. Mosenthal WP, Landy DC, Boyajian HH, Idowu OA, Shi LL, Ramos E, Lee MJ. Thromboprophylaxis in spinal surgery. Spine. 2018;43:E474–E481. DOI: 10.1097/BRS.0000000000002379.

61. Wang MY, Chang TY, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine. 2017;26:411–418. DOI: 10.3171/2016.9.SPINE16375.

62. Martini ML, Nistal DA, Deutsch BC, Caridi JM. Characterizing the risk and outcome profiles of lumbar fusion procedures in patients with opioid use disorders: a step toward improving enhanced recovery protocols for a unique patient population. Neurosurg Focus. 2019;46:E12. DOI: 10.3171/2019.1.FOCUS18652.

63. Hong JY, Kim WO, Koo BN, Cho JS, Suk EH, Kil HK. Fentanyl-sparing effect of acetaminophen as a mixture of fentanyl in intravenous parent-/nurse-controlled analgesia after pediatric ureteroneocystostomy. Anesthesiology. 2010;113:672–677. DOI: 10.1097/ALN.0b013e3181e2c34b.

64. Rusy LM, Hainsworth KR, Nelson TJ, Czarnecki ML, Tassone JC, Thometz JG, Lyon RM, Berens RJ, Weisman SJ. Gabapentin use in pediatric spinal fusion patients: a randomized, double-blind, controlled trial. Anesth Analg. 2010;110:1393–1398. DOI: 10.1213/ANE.0b013e3181d41dc2.

65. Sivaganesan A, Chotai S, White-Dzuro G, McGirt MJ, Devin CJ. The effect of NSAIDs on spinal fusion: a cross-disciplinary review of biochemical, animal, and human studies. Eur Spine J. 2017;26:2719–2728. DOI: 10.1007/s00586-017-5021-y.

66. Santa Mina D, Clarke H, Ritvo P, Leung YW, Matthew AG, Katz J, Trachtenberg J, Alibhai SMH. Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy. 2014;100:196–207. DOI: 10.1016/j.physio.2013.08.008.

67. Carli F, Scheede-Bergdahl C. Prehabilitation to enhance perioperative care. Anesthesiol Clin. 2015;33:17–33. DOI: 10.1016/j.anclin.2014.11.002.

68. Smith J, Probst S, Calandra C, Davis R, Sugimoto K, Nie L, Gan TJ, Bennett-Guerrero E. Enhanced recovery after surgery (ERAS) program for lumbar spine fusion. Perioper Med (Lond). 2019;8:4. DOI: 10.1186/s13741-019-0114-2.

69. Ripolles-Melchor J, Ramirez-Rodriguez JM, Casans-Frances R, Aldecoa C, Abad-Motos A, Logrono-Egea M, Garcia-Erce JA, Camps-Cervantes A, Ferrando-Ortola C, Suarez de la Rica A, Cuellar-Martinez A, Marmana-Mezquita S, Abad-Gurumeta A, Calvo-Vecino JM. Association between use of enhanced recovery after surgery protocol and postoperative complications in colorectal surgery: The Postoperative Outcomes Within Enhanced Recovery After Surgery Protocol (POWER) Study. JAMA Surg. 2019;154:725–736. DOI: 10.1001/jamasurg.2019.0995.

70. Hu QL, Liu JY, Hobson DB, Cohen ME, Hall BL, Wick EC, Ko CY. Best practices in data use for achieving successful implementation of enhanced recovery pathway. J Am Coll Surg. 2019;229:626–632.e1. DOI: 10.1016/j.jamcollsurg.2019.08.1448.

71. Cohen R, Gooberman-Hill R. Staff experiences of enhanced recovery after surgery: systematic review of qualitative studies. BMJ Open. 2019;9:e022259. DOI: 10.1136/bmjopen-2018-022259.

72. Currie A, Soop M, Demartines N, Fearon K, Kennedy R, Ljungqvist O. Erratum to: Enhanced recovery after surgery interactive audit system: 10 years' experience with an international web-based clinical and research perioperative care database. Clin Colon Rectal Surg. 2019;32:e1. DOI: 10.1055/s-0039-1678573.

73. Verrier JF, Paget C, Perlier F, Demesmay F. How to introduce a program of Enhanced Recovery after Surgery? The experience of the CAPIO group. J Visc Surg. 2016;153:S33–S39. DOI: 10.1016/j.jviscsurg.2016.10.001.

74. Ljungqvist O, Thanh NX, Nelson G. ERAS-Value based surgery. J Surg Oncol. 2017;116:608–612. DOI: 10.1002/jso.24820.

75. Elsarrag M, Soldozy S, Patel P, Norat P, Sokolowski JD, Park MS, Tvrdik P, Kalani YS. Enhanced recovery after spine surgery: a systematic review. Neurosurg Focus. 2019;46:E3. DOI: 10.3171/2019.1.FOCUS18700.

76. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res. 2014;472:1727–1737. DOI: 10.1007/s11999-014-3465-5.

77. Milbrandt TA, Singhal M, Minter C, McClung A, Talwalkar VR, Iwinski HJ, Walker J, Beimesch C, Montgomery C, Sucato DJ. A comparison of three methods of pain control for posterior spinal fusions in adolescent idiopathic scoliosis. Spine. 2009;34:1499–1503. DOI: 10.1097/BRS.0b013e3181a90ceb.

78. Cohen M, Zuk J, McKay N, Erickson M, Pan Z, Galinkin J. Intrathecal morphine versus extended-release epidural morphine for postoperative pain control in pediatric patients undergoing posterior spinal fusion. Anesth Analg. 2017;124:2030–2037. DOI: 10.1213/ANE.0000000000002061.

79. Ibach BW, Loeber C, Shukry M, Hagemann TM, Harrison D, Johnson PN. Duration of intrathecal morphine effect in children with idiopathic scoliosis undergoing posterior spinal fusion. J Opioid Manag. 2015;11:295–303. DOI: 10.5055/jom.2015.0278.

80. Firouzian A, Baradari AG, Ehteshami S, Zamani Kiasari A, Shafizad M, Shafiei S, Younesi Rostami F, Alipour A, Ala S, Darvishi-Khezri H, Haddadi K. The effect of ultra-low-dose intrathecal naloxone on pain intensity after lumbar laminectomy with spinal fusion: a randomized controlled trial. J Neurosurg Anesthesiol. 2020;32:70–76. DOI: 10.1097/ANA.0000000000000537.

81. Ali ZS, Flanders TM, Ozturk AK, Malhotra NR, Leszinsky L, McShane BJ, Gardiner D, Rupich K, Chen HI, Schuster J, Marcotte PJ, Kallan MJ, Grady MS, Fleisher LA, Welch WC. Enhanced recovery after elective spinal and peripheral nerve surgery: pilot study from a single institution. J Neurosurg Spine. 2019:1–9. DOI: 10.3171/2018.9.SPINE18681.

82. Ortega-Garcia FJ, García-Del-Pino I, Aunon-Martin I, Carrascosa-Fernandez AJ. Utility of percutaneous catheters for local anaesthetics infusion for postoperative pain control in lumbar arthrodesis. A prospective cohort study. Rev Esp Cir Ortop Traumatol (Engl Ed).. 2018;62:365–372. DOI: 10.1016/j.recot.2018.01.007.

83. Lechat JP, Van der Linden P. Fluid therapy in the intraoperative setting. Transfus Apher Sci. 2019;58:408–411. DOI: 10.1016/j.transci.2019.06.016.

84. Koraki E, Stachtari C, Stergiouda Z, Stamatopoulou M, Gkiouliava A, Sifaki F, Chatzopoulos S, Trikoupi A. Blood and fluid management during scoliosis surgery: a single-center retrospective analysis. Eur J Orthop Surg Traumatol. 2020;30:809–814. DOI: 10.1007/s00590-020-02637-y.

85. Munch JL, Zusman NL, Lieberman EG, Stucke RS, Bell C, Philipp TC, Smith S, Ching AC, Hart RA, Yoo JU. A scoring system to predict postoperative medical complications in high-risk patients undergoing elective thoracic and lumbar arthrodesis. Spine J. 2016;16:694–699. DOI: 10.1016/j.spinee.2015.07.442.

86. Thiele RH, Raghunathan K, Brudney CS, Lobo DN, Martin D, Senagore A, Cannesson M, Gan TJ, Mythen MMG, Shaw AD, Miller TE. Correction to: American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med (Lond). 2018;7:5. DOI: 10.1186/s13741-018-0085-8.

87. Guest JD, Vanni S, Silbert L. Mild hypothermia, blood loss and complications in elective spinal surgery. Spine J. 2004;4:130–137. DOI: 10.1016/j.spinee.2003.08.027.

88. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–R693. DOI: 10.1186/cc3887.

89. Chakravarthy VB, Yokoi H, Coughlin DJ, Manlapaz MR, Krishnaney AA. Development and implementation of a comprehensive spine surgery enhanced recovery after surgery protocol: the Cleveland Clinic experience. Neurosurg Focus. 2019;46:E11. DOI: 10.3171/2019.1.FOCUS18696.

90. Kanayama M, Oha F, Togawa D, Shigenobu K, Hashimoto T. Is closed-suction drainage necessary for single-level lumbar decompression?: review of 560 cases. Clin Orthop Relat Res. 2010;468:2690–2694. DOI: 10.1007/s11999-010-1235-6.

91. Lai Q, Song Q, Guo R, Bi H, Liu X, Yu X, Zhu J, Dai M, Zhang B. Risk factors for acute surgical site infections after lumbar surgery: a retrospective study. J Orthop Surg Res. 2017;12:116. DOI: 10.1186/s13018-017-0612-1.

92. Adogwa O, Elsamadicy AA, Sergesketter AR, Shammas RL, Vatsia S, Vuong VD, Khalid S, Cheng J, Bagley CA, Karikari IO. Post-operative drain use in patients undergoing decompression and fusion: incidence of complications and symptomatic hematoma. J Spine Surg. 2018;4:220–226. DOI: 10.21037/jss.2018.05.09.

93. Liu JM, Chen WZ, Fu BQ, Chen JW, Liu ZL, Huang SH. The use of closed suction drainage in lumbar spinal surgery: Is It really necessary? World Neurosurg. 2016;90:109–115. DOI: 10.1016/j.wneu.2016.02.091.

94. Patel SB, Griffiths-Jones W, Jones CS, Samartzis D, Clarke AJ, Khan S, Stokes OM. The current state of the evidence for the use of drains in spinal surgery: systematic review. Eur Spine J. 2017;26:2729–2738. DOI: 10.1007/s00586-017-4983-0.

95. Mirzai H, Eminoglu M, Orguc S. Are drains useful for lumbar disc surgery? A prospective, randomized clinical study. J Spinal Disord Tech. 2006;19:171–177. DOI: 10.1097/01.bsd.0000190560.20872.a7.

96. Baldini G, Bagry H, Aprikian A, Carli F. Postoperative urinary retention: anesthetic and perioperative considerations. Anesthesiology. 2009;110:1139–1157. DOI: 10.1097/ALN.0b013e31819f7aea.

97. Altschul D, Kobets A, Nakhla J, Jada A, Nasser R, Kinon MD, Yassari R, Houten J. Postoperative urinary retention in patients undergoing elective spinal surgery. J Neurosurg Spine. 2017;26:229–234. DOI: 10.3171/2016.8.SPINE151371.

98. Jackson J, Davies P, Leggett N, Nugawela MD, Scott LJ, Leach V, Richards A, Blacker A, Abrams P, Sharma J, Donovan J, Whiting P. Systematic review of interventions for the prevention and treatment of postoperative urinary retention. BJS Open. 2019;3:11–23. DOI: 10.1002/bjs5.50114.

99. Yasuda T, Hasegawa T, Yamato Y, Kobayashi S, Togawa D, Arima H, Matsuyama Y. Optimal timing of preoperative skin preparation with povidone-iodine for spine surgery: a prospective, randomized controlled study. Asian Spine J. 2015;9:423–426. DOI: 10.4184/asj.2015.9.3.423.

100. Nathan N. Management of postoperative nausea and vomiting: The 4th Consensus Guidelines. Anesth Analg.2020;131:410. DOI: 10.1213/ANE.0000000000004996.

101. Gan TJ, Diemunsch P, Habib AS, Kovac A, Kranke P, Meyer TA, Watcha M, Chung F, Angus S, Apfel CC, Bergese SD, Candiotti KA, Chan MT, Davis PJ, Hooper VD, Lagoo-Deenadayalan S, Myles P, Nezat G, Philip BK, Tramer MR. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg. 2014;118:85–113. DOI: 10.1213/ANE.0000000000000002.

102. Sarin P, Urman RD, Ohno-Machado L. An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors. J Am Med Inform Assoc. 2012;19:995–1002. DOI: 10.1136/amiajnl-2012-000872.

103. Wahood W, Yolcu Y, Alvi MA, Goyal A, Long TR, Bydon M. Assessing the differences in outcomes between general and non-general anesthesia in spine surgery: Results from a national registry. Clin Neurol Neurosurg. 2019;180:79–86. DOI: 10.1016/j.clineuro.2019.03.021.

104. Yoshimoto H, Nagashima K, Sato S, Hyakumachi T, Yanagibashi Y, Masuda T. A prospective evaluation of anesthesia for posterior lumbar spine fusion: the effectiveness of preoperative epidural anesthesia with morphine. Spine. 2005;30:863–869. DOI: 10.1097/01.brs.0000158879.26544.69.

105. Konstantopoulos K, Makris A, Moustaka A, Karmaniolou I, Konstantopoulos G, Mela A. Sevoflurane versus propofol anesthesia in patients undergoing lumbar spondylodesis: a randomized trial. J Surg Res. 2013;179:72–77. DOI: 10.1016/j.jss.2012.09.038.

106. Brown CH 4th, Jones EL, Lin C, Esmaili M, Gorashi Y, Skelton RA, Kaganov D, Colantuoni EA, Yanek LR, Neufeld KJ, Kamath V, Sieber FE, Dean CL, Edwards CC 2nd, Hogue CW. Shaping anesthetic techniques to reduce post-operative delirium (SHARP) study: a protocol for a prospective pragmatic randomized controlled trial to evaluate spinal anesthesia with targeted sedation compared with general anesthesia in older adults undergoing lumbar spine fusion surgery. BMC Anesthesiol. 2019;19:192. DOI: 10.1186/s12871-019-0867-7.

107. Song Y, Shim JK, Song JW, Kim EK, Kwak YL. Dexmedetomidine added to an opioid-based analgesic regimen for the prevention of postoperative nausea and vomiting in highly susceptible patients: A randomised controlled trial. Eur J Anaesthesiol. 2016;33:75–83. DOI: 10.1097/EJA.0000000000000327.

108. Hwang W, Lee J, Park J, Joo J. Dexmedetomidine versus remifentanil in postoperative pain control after spinal surgery: a randomized controlled study. BMC Anesthesiol. 2015;15:21. DOI: 10.1186/s12871-015-0004-1.

109. Li J, Yang JS, Dong BH, Ye JM. The effect of dexmedetomidine added to preemptive ropivacaine infiltration on postoperative pain after lumbar fusion surgery: a randomized controlled trial. Spine. 2019;44:1333–1338. DOI: 10.1097/BRS.0000000000003096.

110. Abdel Hay J, Kobaiter-Maarrawi S, Tabet P, Moussa R, Rizk T, Nohra G, Okais N, Samaha E, Maarrawi J. Bupivacaine field block with clonidine for postoperative pain control in posterior spine approaches: a randomized double-blind trial. Neurosurgery. 2018;82:790–798. DOI: 10.1093/neuros/nyx313.

111. Epstein NE. A review article on the benefits of early mobilization following spinal surgery and other medical/surgical procedures. Surg Neurol Int. 2014;5(Suppl 3):S66–S73. DOI: 10.4103/2152-7806.130674.

112. Staartjes VE, de Wispelaere MP, Schroder ML. Improving recovery after elective degenerative spine surgery: 5-year experience with an enhanced recovery after surgery (ERAS) protocol. Neurosurg Focus. 2019;46:E7. DOI: 10.3171/2019.1.FOCUS18646.

113. Yang MMH, Riva-Cambrin J, Cunningham J, Jette N, Sajobi TT, Soroceanu A, Lewkonia P, Jacobs WB, Casha S. Development and validation of a clinical prediction score for poor postoperative pain control following elective spine surgery. J Neurosurg Spine. 2020;15:1–10. DOI: 10.3171/2020.5.SPINE20347.

114. Walker CT, Gullotti DM, Prendergast V, Radosevich J, Grimm D, Cole TS, Godzik J, Patel AA, Whiting AC, Little A, Uribe JS, Kakaria UK, Turner JD. Implementation of a standardized multimodal postoperative analgesia protocol improves pain control, reduces opioid consumption, and shortens length of hospital stay after posterior lumbar spinal fusion. Neurosurgery. 2020;87:130–136. DOI: 10.1093/neuros/nyz312.


Рецензия

Для цитирования:


Сайфуллин А.П., Боков А.Е., Алейник А.Я., Исраелян Ю.А., Млявых С.Г. Технология ускоренного восстановления в спинальной хирургии у детей и подростков: систематический обзор литературы. "Хирургия позвоночника". 2021;18(4):6-27. https://doi.org/10.14531/ss2021.4.6-27

For citation:


Saifullin A.P., Bokov A.E., Aleynik A.Y., Israelyan Yu.A., Mlyavykh S.G. Enhanced recovery after surgery in pediatric spine surgery: systematic review. Hirurgiâ pozvonočnika (Spine Surgery). 2021;18(4):6-27. https://doi.org/10.14531/ss2021.4.6-27

Просмотров: 390


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)