Histomorphometric study of the soleus muscle under conditions of modeling of spinal cord contusion injury: experimental morphological study
https://doi.org/10.14531/ss2021.4.111-118
Abstract
Objective. To conduct a morphometric analysis of the soleus muscle of rats after moderate spinal cord contusion injury.
Material and Methods. Experiments were performed on female Wistar rats aged 8–12 months, weighing 270–320 g. Animals of the experimental group (n = 25) underwent laminectomy at the T9 level under general anesthesia and modeling of spinal contusion injury of moderate severity. Intact rats constituted the control group (n = 10). Euthanasia was performed on the 5th, 15th, 30th, 60th, 90th, and 180th days of the experiment. Paraffin sections were stained with hematoxylin-eosin and Masson, the diameters of muscle fibers were determined by computer morphometry, and histograms of their distribution were obtained.
Results. In the soleus muscle, the signs of reversible reparative processes prevailed in response to neurotrophic damage. It was evidenced by a local increase in the diversity of myocyte diameters and the loss of polygonality of their profiles, focal destruction of muscle fibers, activation of the connective tissue component, disorganization of some intramuscular nerve conductors, and vascular fibrosis of perimysium. Nevertheless, the histostructure of an intact muscle prevailed in the course of the experiment, which was confirmed by the data of morphometric analysis. All histograms of the distribution of the muscle fiber diameters are unimodal with a mode in the range of 30–41 μm. On the 180th day, the maximum myocyte diameters in the histogram of the left limb muscle belonged to the range of 21–30 μm, which was typical for histograms in the intact group.
Conclusion. The nature of the plastic reorganization of the soleus muscle when neurotrophic control is impaired indicates compensatory regeneration of muscle tissue by the type of restitution, which opens up the possibility of predicting the rehabilitation period. It is advisable to take this into account when developing medical and social programs and therapeutic measures, where the most important role is played by superficial neuromuscular and functional electrical stimulation.
About the Authors
Galina Nikolaevna FilimonovaRussian Federation
PhD in Biology, Senior Researcher of the Laboratory of Morphology
Nadezhda Vladimirovna Kubrak
Russian Federation
junior researcher of the experimental laboratory
Vitaly Viktorovich Krasnov
Russian Federation
DSc in Biology, Head of the Research and Training Center for Biomedical Technologies, Head of the Department of Biomedical Problems
Sergey Olegovich Ryabykh
Russian Federation
DMSc, Deputy Director for Education and Interaction with the Regions, Head of the Clinic for Spinal Pathology and Rare Diseases
References
1. Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of lower extremity electrical stimulation training after spinal cord injury. J Vis Exp. 2018;(132):57000. DOI: 10.3791/57000.
2. Shah PK, Ye F, Liu M, Jayaraman A, Baligand C, Walter G, Vandenborne K. In vivo (31)P NMR spectroscopy assessment of skeletal muscle bioenergetics after spinal cord contusion in rats. Eur J Appl Physiol. 2014;114:847–858. DOI: 10.1007/s00421-013-2810-9.
3. Farina ММ, de la Barrera SS, Marques AM, Velasco MEF, Vazquez RG. Update on traumatic acute spinal cord injury. Part 2. Med Intensiva. 2017;41:306–315. DOI: 10.1016/j.medin.2016.10.014.
4. Krauss H, Maier D, Buhren V, Hogel F. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients. Spinal Cord. 2015;53:345–348. DOI: 10.1038/sc.2014.186.
5. Ranganathan K, Loder S, Agarwal S, Wong VW, Forsberg J, Davis TA, Wang S, James AW, Levi B. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97:1101–1011. DOI: 10.2106/JBJS.N.01056.
6. Zhang N, Fang M, Chen H, Gou F, Ding M. Evaluation of spinal cord injury animal models. Neural Regen Res. 2014;9:2008–2012. DOI: 10.4103/1673-5374.143436.
7. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. DOI: 10.1089/neu.1995.12.1.
8. Zeman RJ, Wen X, Ouyang N, Rocchio R, Shih L, Alfieri A, Moorthy C, Etlinger JD. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats. Neurosurgery. 2008;63:981–988. DOI: 10.1227/01.NEU.0000330404.37092.3E.
9. Blight AR. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J Neurol Sci. 1991;103:156–171. DOI: 10.1016/0022-510x(91)90159-5.
10. Hyun SJ, Lee CH, Kwon JW, Yoon CY, Lim JY, Kim KJ, Jahng TA, Kim HJ. Comparative analysis between thoracic spinal cord and sacral neuromodulation in a rat spinal cord injury model: a preliminary report of a rat spinal cord stimulation model. Korean J Spine. 2013;10:14–18. DOI: 10.14245/kjs.2013.10.1.14.
11. Lin CY, Androjna C, Rozic R, Nguyen BT, Parsons B, Midura RJ, Lee YS. Differential adaptations of the musculoskeletal system after spinal cord contusion and transection in rats. J Neurotrauma. 2018;35:1737–1744. DOI: 10.1089/neu.2017.5444.
12. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. 1911;LVII:878–880. DOI: 0.1001/jama.1911.04260090100008.
13. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003;20:179–193. DOI: 10.1089/08977150360547099.
14. Смекаленков О.А., Пташников Д.А., Божкова С.А., Михайлов Д.А., Масевнин С.В., Заборовский Н.С., Лапаева О.А. Факторы риска развития глубокой инфекции области хирургического вмешательства после операций на позвоночнике // Гений ортопедии. 2019. Т. 25. № 2. С. 219–225. [Smekalenkov OA, Ptashnikov DA, Bozhkova SA, Mihailov DA, Masevnin SV, Zaborovskii NS, Lapaeva OA. Risk factors for deep infection of the surgical site after spinal operations. Genij Ortopedii. 2019;25(2):219–225. In Russian]. DOI: 10.18019/1028-4427-2019-25-2-219-225.
15. Губин А.В., Прудникова О.Г., Бурцев А.В., Хомченков М.В., Котельников А.О. Дренирование послеоперационных ран в хирургии позвоночника // Гений ортопедии. 2017. Т. 23. № 2. С. 180–186. [Gubin AV, Prudnikova OG, Burtsev AV, Khomchenkov MV, Kotel’nikov AO. Role of postoperative wound drains in spinal surgery. Genij Ortopedii. 2017;23(2):180–186. In Russian]. DOI: 10.18019/1028-4427-2017-23-2-180-186.
16. Гайдышев И.П. Моделирование стохастических и детерминированных систем: руководство пользователя программы AtteStat. Курган, 2015. [Gajdyshev IP. Modeling Stochastic and Deterministic Systems: User’s Guide for the AtteStat program. Kurgan, 2015. In Russian].
17. Komiya Y, Sawano S, Mashima D, Ichitsubo R, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis. J Muscle Res Cell Motil. 2017;38:163–173. DOI: 10.1007/s10974-017-9468-6.
18. Olewnik L, Zielinska N, Paulsen F, Podgorski M, Haladaj R, Karauda P, Polguj M. A proposal for a new classification of soleus muscle morphology. Ann Anat. 2020;232:151584. DOI: 10.1016/j.aanat.2020.151584.
19. Кубрак Н.В., Кононович Н.А. Гемодинамика в скелетных мышцах и температурная реакция после повреждения спинного мозга (экспериментальное исследование) // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2021. Т. 246. № 2. С. 112–117. [Kubrak NV, Kononovich NA. Hemodynamics in the skeletal muscles and temperature response after spinal cord injury (an experimental study). Proceedings of the Kazan State Academy of Veterinary Medicine n.a. N.E. Bauman. 2021;246(2):112–117. In Russian]. DOI: 10.31588/2413-4201-1883-246-2-112-117.
20. Мурзабаев Х.Х., Батыршин А.Р., Батыршина Г.Ф. Морфофункциональная характеристика соединительной ткани скелетных мышц при экспериментальной травматической денервации. Медицинский вестник Башкортостана. 2010. Т. 5. № 2. С. 86–89. [Murzabaev KhKh, Batyrshin AR, Batyrshina GF. Morphofunctional characteristics of connective tissue in experimental traumatic denervation. Med Bull Bashkortostan. 2010;5(2):86–89. In Russian].
21. Kim YM, Ji ES, Ko IG, Jin JJ, Cho YH, Seo TB. Combination of treadmill exercise with bone marrow stromal cells transplantation activates protein synthesis-related molecules in soleus muscle of the spinal cord injured rats. J Exerc Rehabil. 2019;15:377–382. DOI: 10.12965/jer.1938284.142.
22. Kissane RWP, Wright O, Al’Joboori YD, Marczak P, Ichiyama RM, Egginton S. Effects of treadmill training on microvascular remodeling in the rat after spinal cord injury. Muscle Nerve. 2019;59:370–379. DOI: 10.1002/mus.26379.
23. Phillips EG, Beggs LA, Ye F, Conover CF, Beck DT, Otzel DM, Ghosh P, Bassit ACF, Borst SE, Yarrow JF. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury. PLoS One. 2018;13:e0194440. DOI: 10.1371/journal.pone.0194440.
24. Graham ZA, Goldberger A, Azulai D, Conover CF, Ye F, Bauman WA, Cardozo CP, Yarrow JF. Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. Physiol Rep. 2020;8:e14357. DOI: 10.14814/phy2.14357.
25. Мошонкина Т.Р., Погольская М.А., Виноградская З.В., Лихачева П.К., Герасименко Ю.П. Чрескожная электрическая стимуляция спинного мозга в двигательной реабилитации пациентов с травмой спинного мозга. Интегративная физиология. 2020. Т. 1. № 4. С. 351–365. [Moshonkina TR, Pogolskaya MA, Vinogradskaya ZV, Likhacheva PK, Gerasimenko YuP. Transcutaneous spinal cord electrical stimulation in motor rehabilitation of patients with spinal cord injury. Integrative Рhysiology. 2020;1(4):351–365. In Russian]. DOI: 10.33910/2687-1270-2020-1-4-351-365.
26. Савенкова А.А., Сарана, А.М., Щербак С.Г. Герасименко Ю.П., Мошонкина Т.Р. Неинвазивная электрическая стимуляция спинного мозга в комплексной реабилитации больных со спинномозговой травмой. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2019. Т. 96. № 5. С. 11–18. [Savenkova AA, Sarana AM, Shcherbak SG, Gerasimenko YuP, Moshonkina TR. Noninvasive spinal cord electrical stimulation in the complex rehabilitation of patients with spinal cord injury. Voprosy Kurortologii, Fizioterapii I Lechebnoi Fizicheskoi Kultury. 2019;96(5):11–18. In Russian]. DOI 10.17116/kurort20199605111.
27. Баиндурашвили А.Г., Виссарионов С.В., Белянчиков С.М., Картавенко К.А., Солохина И.Ю., Козырев А.С., Пухов А.М., Мошонкина Т.Р., Герасименко Ю.П. Комплексное лечение пациента с осложненной травмой грудного отдела позвоночника с использованием методики чрескожной электрической стимуляции спинного мозга (клиническое наблюдение). Гений ортопедии. 2020. Т. 26. № 1. С. 79–88. [Baindurashvili AG, Vissarionov SV, Belianchikov SM, Kartavenko KA, Solokhina IYu, Kozyrev AS, Pukhov AM, Moshonkina TR, Gerasimenko YuP. Comprehensive treatment of a patient with complicated thoracic spine injury using percutaneous electrical spinal cord stimulation (case report). Genij Ortopedii. 2020;26(1):79–88. In Russian]. DOI: 10.18019/1028-4427-2020-26-1-79-88.
28. Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZH, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25:631–654. DOI: 10.1016/j.pmr.2014.05.001.
29. Tefertiller C, Gerber D. Step ergometer training augmented with functional electrical stimulation in individuals with chronic spinal cord injury: a feasibility study. Artif Organs. 2017;41:E196–E202. DOI: 10.1111/aor.13060.
30. Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A, Marcante A, Piccione F, Pond A, Carraro U. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and aging. Implications for their recovery by Functional Electrical Stimulation. Neurol Res. 2017;39:660–666. DOI: 10.1080/01616412.2017.1314906.
31. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seбсez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Ederle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. DOI: 10.1038/s41586-018-0649-2.
Review
For citations:
Filimonova G.N., Kubrak N.V., Krasnov V.V., Ryabykh S.O. Histomorphometric study of the soleus muscle under conditions of modeling of spinal cord contusion injury: experimental morphological study. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2021;18(4):111-115. https://doi.org/10.14531/ss2021.4.111-118