Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Comparison of scoliosis diagnostic capabilities in screening of schoolchildren by computer optical topography and video rasterstereography using TODP and Formetric topographs

https://doi.org/10.14531/ss2023.1.16-27

Abstract

Objective. To analyze the results of scoliosis diagnostics during the examination of the same group of schoolchildren by TODP and Formetriс topographs.

Material and Methods. A total of 364 schoolchildren (197 girls and 167 boys, mean age 8.92 ± 1.9 years) were examined, divided into 3 age groups: 6–8 years old (n = 135, mean age 7.22 ± 0.7 years), 8–10 years old (n = 134 children, mean age 8.95 ± 0.56 years), 10–12 years old (n = 95 children, mean age 11.35 ± 1.59 years). Schoolchildren were examined in turn by computer optical topography (TODP, released in 2021, WTOPO 5.4-2021 software) and video raster stereography (Formetric 4D released in 2015, DICAM2.6.4 software). Three standard screening poses were used for TODP, and one pose with averaging 12 frames – for Formetric.

Results. The obtained statistics on the distribution of topographic analogs of the Cobb angle (the angle of lateral asymmetry for TODP and the angle of scoliosis for Formetric) showed a significant discrepancy in the percentage of detected scoliosis cases: 0–5° – 50,0 % (TODP) and 4.1 % (Formetric); 5–7° – 33.8 % and 9.3 %; 7–9° – 12.4 % and 17.9 %; 9–15° – 3.8 % and 51.6 %; 15–25° – 0,0 % and 16.2 %; 25–50° – 0,0 % and 0.8 %, respectively. Clinically significant cases of scoliosis (9° or more) in the age groups was 3.7 %, 2.2 %, 6.6 % (mean – 3.8 %) for TODP and 71.1 %, 70.1 %, 63.2 % (average – 68.7 %) for Formetric. At the same time, only 14 cases of clinically significant scoliosis (from 9° to 15°), including 9 structural and 5 compensatory scoliosis, were detected by TODP, and 250 scoliosis cases (188 – from 9° to 15°, 59 – from 15° to 25°, 3 – from 25° to 37°) – by Formetric. For 9 structural scoliosis cases (according to TODP), the Formetric diagnosis coincided completely only in 2 cases and  partially in 3 (55 %), and in 5 cases of compensatory scoliosis (according to TODP) it coincided completely in 3 cases and partially in 1 (80 %).

Conclusion. According to the results of topographic screening of 364 schoolchildren using the TODP topograph, 3.8 % of scoliosis cases of 9° or more was detected, which corresponds to the average screening data in a number of countries around the world. Examination of the same schoolchildren using the Formetric topograph revealed 68.7 % of cases of scoliosis of 9° or more, which allows us to judge about overdiagnosis and conclude that Formetric is poorly suited for topographic screening of scoliosis in schoolchildren.

About the Authors

V. N. Sarnadskiy
LLC “Medical topographic systems “METOS” 31 Krylova str., office 54, Novosibirsk, 630091, Russia
Russian Federation

PhD in Technical Sciences, General Director 



D. Yu. Batorov
Hippocrates Polyclinic LLC 55b Aviastroitelei prospect, Dimitrovgrad, 433513, Russia
Russian Federation

orthopedist, chief physician



O. A. Shchuchkina
Polyclinic Hippocrates LLC 55b Aviastroitelei prospect, Dimitrovgrad, 433513, Russia
Russian Federation

orthopedist



References

1. Михайловский М.В., Фомичев Н.Г. Хирургия деформаций позвоночника. Новосибирск, 2011. [Mikhailovsky MV, Fomichev NG. Surgery of Spinal Deformities. Novosibirsk, 2011].

2. Lonstein JE. Screening for spinal deformities in Minnesota schools. Clin Orthop Relat Res. 1977;(126):33–42.

3. Takasaki H. Moire topography. Appl Opt. 1970;9:1467–1472. DOI: 10.1364/AO.9.001467.

4. Grivas TB, Wade MH, Negrini S, O’Brien JP, Maruyama T, Hawes MC, Rigo M, Weiss HR, Kotwicki T, Vasiliadis ES, Sulam LN, Neuhous T. SOSORT consensus paper: school screening for scoliosis. Where are we today? Scoliosis. 2007;2:17. DOI: 10.1186/1748-7161-2-17.

5. Turner-Smith AR. Television scanning technique for topographic body measurements. Biostereometrics’82: Proc. SPIE. 1983;361:279–283.

6. Pearson JD, Dangerfield PH, Atkinson JT, Gomm JB, Dorgan JC, Hobson CA, Harvey DM. Measurement of body surface topography using an automated imaging system. Acta Orthop Belg. 1992;58 Suppl 1:73–79.

7. Wojcik AS, Phillips GF, Mehta MH. Recording of the back surface and spinal shape by the Quantec imaging system – a new technique the scoliosis clinic. J Bone Joint Surg Br. 1994;76 Suppl 1:10–11.

8. Drerup B, Hierholzer E. Back shape measurement using video rasterstereography and three-dimensional reconstruction of spinal shape. Clin Biomech (Bristol, Avon). 1994;9:28–36. DOI: 10.1016/0268-0033(94)90055-8.

9. Евразийский патент № 000111. Способ компьютерной оптической топографии тела человека и устройство для его осуществления // Сарнадский В.Н., Садовой М.А., Фомичев Н.Г. A61B 5/103 № 199600068; заявл. 26.08.96; опубл. 27.08.1998, Бюл. № 4. [Sarnadsky VN, Sadovoy MA, Fomichev NG. Method of computer optical topography of the human body and device for its implementation. EUR Patent 000111, appl. 26.08.1996; publ. 27.08.1998. Bull. 4].

10. Batouche M, Benlamri R, Kholladi MK. A computer vision system for diagnosing scoliosis using moire images. Comput Biol Med. 1996;26:33–53. DOI: 10.1016/0010-4825(96)00014-5.

11. Hill DL, Berg DC, Raso VJ, Lou E, Durdle NG, Mahood JK, Moreau MJ. Evaluation of a laser scanner for surface topography. Stud Health Technol Inform. 2002;88:90–94.

12. Treuillet S, Lucas Y, Crepin G, Peuchot B, Pichaud JC. SYDESCO: a laser-video scanner for 3D scoliosis evaluations. Stud Health Technol Inform. 2002;88:70–73.

13. Turner-Smith AR, Harris JD, Houghton GR, Jefferson RJ. A method for analysis of back shape in scoliosis. J Biomech. 1988;21:497–509. DOI: 10.1016/0021-9290(88)90242-4.

14. Frobin W, Hierholzer E. Video rasterstereography: a method for on-line measurement of body surfaces. Photogramm Eng Remote Sensing. 1991;57:1341–1345.

15. Drerup B, Hierholzer E. First experiences with clinical application of video rasterstereography. In: Surface Topography and Spinal Deformity, ed. by Alberti A, Drerup B, Hierholzer E. 1992;6:202–208.

16. Frerich JM, Hertzler K, Knott P, Mardjetko S. Comparison of radiographic and surface topography measurements in adolescents with idiopathic scoliosis. Open Orthop J 2012;6:261–265. DOI: 10.2174/1874325001206010261.

17. Bassani T, Stucovitz E, Galbuser F, Brayda Bruno M. Is rasterstereography a valid noninvasive method for the screening of juvenile and adolescent idiopathic scoliosis? Eur Spine J. 2019;28:526–535. DOI: 10.1007/s00586-018-05876-0.

18. Балдова С.Н. Клинико-нейрофизиологическая характеристика идиопатического сколиоза у детей: дис. … канд. мед. наук. Н. Новгород, 2009. [Baldova SN. Clinical and neurophysiological profile of idiopathic scoliosis in children: Extended abstract of MD/PhD Thesis. Nizhny Novgorod, 2009].

19. Багриновская И.Л. Сопоставимость оценки углов сколиотической деформации позвоночника начальных стадий по данным рентгена и компьютерной оптической топографии // Хирургия позвоночника. 2014. № 3. С. 32–37. [Bagrinovskaya IL. Comparability study of the X-ray and computer optical topography estimates of spinal deformity angles at early scoliosis stages. Hir. Pozvonoc. 2014;(3):32–37]. DOI: 10.14531/ss2014.3.32-37.

20. Сарнадский В.Н. Компьютерная оптическая топография. Расширение диапазона достоверной диагностики идиопатического сколиоза углом латеральной асимметрии системы ТОДП // Вестник Всероссийской гильдии протезистов-ортопедов. 2015. № 1 (59). С. 26. [Sarnadskiy VN. Computer optical topography. Expanding the range of reliable diagnosis of idiopathic scoliosis by means of the angle of lateral asymmetry of the TODP system. Bulletin of the All-Russian Guild of Orthopedic Prosthetists. 2015;(1):26].

21. Сарнадский В.Н., Михайловский М.В., Садовая Т.Н., Орлова Т.Н., Кузнецов С.Б. Распространенность структурального сколиоза среди школьников Новосибирска по данным компьютерной оптической топографии // Бюллетень сибирской медицины. 2017. Т. 16. № 1. С. 80–91. [Sarnadskiy VN, Mikhaylovskiy MV, Sadovaya TN, Orlova TN, Kuznetsov SB. Prevalence rate of structural scoliosis in school children of Novosibirsk according to the computed optical topography data. Bulletin of Siberial Medicine. 2017;16(1):80–91]. DOI: 10.20538/1682-0363-2017-1-80-91.

22. Цуканов А.Н., Валетко А.А., Малков А.Б., Зайцева Е.Ю., Николаев В.И., Чарнаштан Д.В. Использование оптического компьютерного томографа (Diers Formetric) в ранней диагностике деформаций позвоночника и стоп у детей // Современные проблемы радиационной медицины: от науки к практике: М-лы междунар. науч.-практ. конф. Гомель, 2015. С. 171–172. [Tsukanov AN, Valetko AA, Malkov AB, Zaitseva EYu, Nikolaev VI, Charnashtan DV. The use of optical computed tomography (Diers Formetric) in the early diagnosis of spinal and foot deformities in children. In: Modern Problems of Radiation Medicine: from Science to Practice. Materials of the international scientific-practical Conference, Gomel, 2015:171–172].

23. Sarnadskiy VN, Fomichev NG, Mikhailovsky MV. Use of functional tests to increase the efficiency of scoliosis screening diagnosis by COMOT method. Stud Health Technol Inform. 2002;91:204–210.

24. Sarnadskiy VN. Classification of postural disorders and spinal deformities in the three dimensions according to computer optical topography. Stud Health Technol Inform. 2012;176:159–163.

25. Schulthess W. The pathology and treatment of the spine. In: Joachimsthal Handbook of Orthopedic Surgery. Berlin: Gustav Fischer, 1905–1907.

26. Сарнадский В.Н., Михайловский М.В. Формализованная классификация сколиоза по типу структуральности дуг, их числу и локализации по данным КОМОТ // Достижения российской травматологии и ортопедии: М-лы XI Всероссийского съезда травматологов-ортопедов. Санкт-Петербург, 2018. Т. 1. С. 303–307. [Sarnadsky VN, Mikhaylovskiy MV. Formalized classification of scoliosis according to the type of curve structurality, quanity and localization according to COMOT findings. In: Achievements of Russian Traumatology and Orthopedics: Materials of the XI All-Russian Congress of Traumatologists and Orthopedists. Saint Petersburg, 2018;1:303–307].

27. Weiss HR. Conservative treatment effects on spinal deformities revealed by surface topography – a critical review of literature. Scoliosis. 2009;4 Suppl 1:O17.


Review

For citations:


Sarnadskiy V.N., Batorov D.Yu., Shchuchkina O.A. Comparison of scoliosis diagnostic capabilities in screening of schoolchildren by computer optical topography and video rasterstereography using TODP and Formetric topographs. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2023;20(1):16-27. https://doi.org/10.14531/ss2023.1.16-27



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)