Preview

Хирургия позвоночника

Расширенный поиск

Эффективность применения растущих систем в лечении сколиозов c ранним началом: систематизированный обзор

https://doi.org/10.14531/ss2023.2.6-20

Аннотация

Цель исследования. Систематизированный анализ литературы с оценкой эффективности применения растущих систем в лечении сколиоза c ранним началом.

Материал и методы. Проведен тематический поиск в базе Google scholar по терминам «growing rods», «early onset scoliosis», «treatment», «surgery», «growth-friendly» с использованием логических операторов AND или OR с глубиной поиска 10 лет. На первом этапе было отобрано 824 тезиса публикаций. Второй этап осуществлен в соответствии с критериями PICOS, отобрано 38 оригинальных исследований, серий наблюдений и обзоров хирургических методик коррекции деформации позвоночника с сохранением потенциала роста. Критерии оценки были разделены на 4 группы: общие данные, коррекция фронтального и сагиттального компонентов деформации, осложнения и незапланированные сценарии.

Результаты. В анализируемых работах наблюдалось гендерное равенство распределения, а средний возраст на момент первичной операции составил 6,6 года для пациентов с традиционными растущими стержнями (traditional growing rods, TGR) и Schilla/Luque Trolley и 4,9 года – для пациентов с Vertical Expandable Prosthetic Titanium Rib (VEPTR). С позиции величины коррекции деформации позвоночника минимальный результат продемонстрировали системы VEPTR (18 % коррекции), а результаты применения TGR и Schilla оказались сопоставимы (42,1 и 53,1 % соответственно), как и показатели динамики длины туловища.

Заключение. Использование систем VEPTR было сопряжено с высоким риском осложнений и несколько меньшей эффективностью коррекции деформации позвоночника, однако VEPTR незаменим при лечении синдрома торакальной недостаточности, а также тяжелых деформаций осевого скелета у детей раннего возраста с использованием внепозвоночных точек фиксации. Системы модуляции роста (Schilla и Luque Trolley) показали схожие с растущими стержнями результаты коррекции деформации.

Об авторах

Ю. В. Молотков
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

травматолог-ортопед, аспирант, 



С. О. Рябых
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Санкт-Петербургский государственный университет Россия, 125412, Москва, ул. Талдомская, 2; Россия, 190103, Санкт-Петербург, наб. р. Фонтанки, 154
Россия

д-р мед. наук, руководитель отдела травматологии и ортопедии научно-исследовательского клинического института педиатрии и детской хирургии им. акад. Ю.Е. Вельтищева;

травматолог-ортопед клиники высоких медицинских технологий им. Н.И. Пирогова, 



Е. Ю. Филатов
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

канд. мед. наук, травматолог-ортопед



О. М. Сергеенко
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

канд. мед. наук, нейрохирург, травматолог-ортопед



И. Э. Хужаназаров
Ташкентская медицинская академия; Республиканский специализированный научно-практический медицинский центр травматологии и ортопедии Узбекистан, 100109, Ташкент, ул. Фараби, 2; , Узбекистан, 100047, Ташкент, ул. Махтумкули, 78
Россия

д-р мед. наук, заведующий кафедрой травматологии, ортопедии, военно-полевой хирургии и нейрохирургии;

заведующий отделением ортопедии и реабилитации



Д. И. Эшкулов
Республиканский специализированный научно-практический медицинский центр травматологии и ортопедии Узбекистан, 100047, Ташкент, ул. Махтумкули, 78
Россия

нейрохирург



Список литературы

1. Williams BA, Matsumoto H, McCalla DJ, Akbarnia BA, Blakemore LC, Betz RR, Flynn JM, Johnston ChE, McCarthy RE, Roye Jr DP, Skaggs DL, Smith JT, Snyder BD, Sponseller PD, Sturm PF, Thompson GH, Yazici M, Vitale MG. Development and initial validation of the Classification of Early-Onset Scoliosis (C-EOS). J Bone Joint Surg Am. 2014;96:1359–1367. DOI: 10.2106/JBJS.M.00253.

2. The Growing Spine: Management of Spinal Disorders in Young Children. Ed. by Akbarnia BA, Yazici M, Thompson GE. 2nd ed. Springer, 2016.

3. Николаев В.Ф., Барановская И.А., Андриевская А.О. Результаты применения функционально-корригирующего корсета типа Шено в комплексной реабилитации детей и подростков с идиопатическим сколиозом // Гений ортопедии. 2019. Т. 25, № 3. С. 368–377. [Nikolaev VF, Baranovskaya IA, Andrievskaya AO. Results of using a functional corrective Cheneau type brace in complex rehabilitation of children and teenagers with idiopathic scoliosis. Genij Ortopedii. 2019;25(3):368–377]. DOI: 10.18019/1028-4427-2019-25-3-368-377.

4. Gaume M, Hajj R, Khouri N, Johnson MB, Miladi L. One-way self-expanding rod in neuromuscular scoliosis preliminary results of a prospective series of 21 patients. JB JS Open Access. 2021;6:e21.00089. DOI: 10.2106/JBJS.OA.21.00089.

5. Chen ZX, Kaliya-Perumal AK, Niu CC, Wang JL, Lai PL. In vitro biomechanical validation of a self- adaptive ratchet growing rod construct for fusionless scoliosis correction. Spine. 2019;44:E1231–E1240. DOI: 10.1097/BRS.0000000000003119.

6. Lemans JVC, Wijdicks SPJ, Castelein RM, Kruyt MC. Spring distraction system for dynamic growth guidance of early onset scoliosis: two-year prospective follow-up of 24 patients. Spine J. 2021;21:671–681. DOI: 10.1016/j.spinee.2020.11.007.

7. Migliorini F, Chiu WO, Scrofani R, Chiu WK, Baroncini A, Iaconetta G, Maffulli N. Magnetically controlled growing rods in the management of early onset scoliosis: a systematic review. J Orthop Surg Res. 2022;17:309. DOI: 10.1186/s13018-022-03200-7.

8. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014;14:579. DOI: 10.1186/s12913-014-0579-0.

9. Xu L, Qiu Y, Chen Z, Shi B, Chen X, Li S, Du C, Zhu Z, Sun X. A re-evaluation of the effects of dual growing rods on apical vertebral rotation in patients with early-onset scoliosis and a minimum of two lengthening procedures: a CT-based study. J Neurosurg Pediatr. 2018;22:306–312. DOI: 10.3171/2018.3.PEDS1832.

10. Liang J, Li S, Xu D, Zhuang Q, Ren Z, Chen X, Gao N. Risk factors for predicting complications associated with growing rod surgery for early-onset scoliosis. Clin Neurol Neurosurg. 2015;136:15–19. DOI: 10.1016/j.clineuro.2015.05.026.

11. Wijdicks SPJ, Tromp IN, Yazici M, Kempen DHR, Castelein RM, Kruyt MC. A comparison of growth among growth-friendly systems for scoliosis: a systematic review. Spine J. 2019;19:789–799. DOI: 10.1016/j.spinee.2018.08.017.

12. Helenius IJ, Saarinen AJ, White KK, McClung A, Yazici M, Garg S, Thompson GH, Johnston CE, Pahys JM, Vitale MG, Akbarnia BA, Sponseller PD. Results of growth-friendly management of early-onset scoliosis in children with and without skeletal dysplasias: a matched comparison. Bone Joint J. 2019;101-B:

13. –1569. DOI: 10.1302/0301-620X.101B12.BJJ-2019-0735.R1.

14. Zarei M, Tavakoli M, Ghadimi E, Moharrami A, Nili A, Vafaei A, Tamehri Zadeh SS, Baghdadi S. Complications of dual growing rod with all- pedicle screw instrumentation in the treatment of early-onset scoliosis. J Orthop Surg Res. 2021;16:112. DOI: 10.1186/s13018-021-02267-y.

15. Jiang H, Hai JJ, Yin P, Su Q, Zhu S, Pan A, Wang Y, Hai Y. Traditional growing rod for early-onset scoliosis in high-altitude regions: a retrospective study. J Orthop Surg Res. 2021;16:483. DOI: 10.1186/s13018-021-02639-4.

16. Wang S, Zhang J, Qiu G, Wang Y, Li S, Zhao Y, Shen J, Weng X. Dual growing rods technique for congenital scoliosis: more than 2 years outcomes: preliminary results of a single center. Spine. 2012;37:E1639–E1644. DOI: 10.1097/BRS.0b013e318273d6bf.

17. Jain VV, Berry CA, Crawford AH, Emans JB, Sponseller PD. Growing rods are an effective fusionless method of controlling early-onset scoliosis associated with neurofibromatosis type 1 (NF1): a multicenter retrospective case series. J Pediatr Orthop. 2017;37:E612–E618. DOI: 10.1097/BPO.0000000000000963.

18. Chen Z, Qiu Y, Zhu Z, Li S, Chen X, Sun X. How does hyperkyphotic early-onset scoliosis respond to growing rod treatment? J Pediatr Orthop. 2017;37:E593–E598. DOI: 10.1097/BPO.0000000000000905.

19. Arandi NR, Pawelek JB, Kabirian N, Thompson GH, Emans JB, Flynn JM, Dormans JP, Akbarnia BA. Do thoracolumbar/lumbar curves respond differently to growing rod surgery compared with thoracic curves? Spine Deform. 2014;2:475–480. DOI: 10.1016/j.jspd.2014.04.002.

20. Luhmann SJ, Smith JC, McClung A, McCullough FL, McCarthy RE, Thompson GH. Radiographic outcomes of Shilla Growth Guidance System and traditional growing rods through definitive treatment. Spine Deform. 2017;5:277–282. DOI: 10.1016/j.jspd.2017.01.011.

21. Jayaswal A, Kandwal P, Goswami A, Vijayaraghavan G, Jariyal A, Upendra BN, Gupta A. Early onset scoliosis with intraspinal anomalies: management with growing rod. Eur Spine J. 2016;25:3301–3307. DOI: 10.1007/s00586-016-4566-5.

22. Chiba T, Inami S, Moridaira H, Takeuchi D, Sorimachi T, Ueda H, Ohe M, Aoki H, Iimura T, Nohara Y, Taneichi H. Growing rod technique with prior foundation surgery and sublaminar taping for early-onset scoliosis. J Neurosurg Spine. 2020;26:1–6. DOI: 10.3171/2020.4.SPINE2036.

23. Bouthors C, Dukan R, Glorion C, Miladi L. Outcomes of growing rods in a series of early-onset scoliosis patients with neurofibromatosis type 1. J Neurosurg Spine. 2020;33:373–380. DOI: 10.3171/2020.2.SPINE191308.

24. Chen Z, Li S, Qiu Y, Zhu Z, Chen X, Xu L, Sun X. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation? J Neurosurg Pediatr. 2017;20:

25. –566. DOI: 10.3171/2017.7.PEDS17233.

26. Yang B, Xu L, Qiu Y, Wang M, Du C, Wang B, Zhu Z, Sun X. Mismatch between proximal rod contour angle and proximal junctional angle: a risk factor associated with proximal junctional kyphosis after growing rods treatment for early-onset scoliosis. Preprint. 2020. DOI: 10.21203/rs.3.rs-129851/v1.

27. Yehia MA, Gawwad Soliman HA, Sayed AM. Dual growing rod technique for the treatment of early-onset scoliosis. Life Sci J. 2020;17:58–64. DOI: 10.7537/marslsj170220.09.

28. Helenius IJ, Oksanen HM, McClung A, Pawelek JB, Yazici M, Sponseller PD, Emans JB, Sanchez Perez-Grueso FJ, Thompson GH, Johnston C, Shah SA, Akbarnia BA. Outcomes of growing rod surgery for severe compared with moderate early-onset scoliosis: a matched comparative study. Bone Joint J. 2018;100-B:772–779. DOI: 10.1302/0301-620X.100B6.BJJ-2017-1490.R1.

29. Chang WC, Hsu KH, Feng CK. Pulmonary function and health-related quality of life in patients with early onset scoliosis after repeated traditional growing rod procedures. J Child Orthop. 2021;15:451–457. DOI: 10.1302/1863-2548.15.210021.

30. Bachabi M, McClung A, Pawelek JB, El Hawary R, Thompson GH, Smith JT, Vitale MG, Akbarnia BA, Sponseller PD. Idiopathic early-onset scoliosis: growing rods versus vertically expandable prosthetic titanium ribs at 5-year follow-up. J Pediatr Orthop. 2020;40:142–148. DOI: 10.1097/BPO.0000000000001202.

31. Klyce W, Mitchell SL, Pawelek J, Skaggs DL, Sanders JO, Shah SA, McCarthy RE, Luhmann SJ, Sturm PF, Flynn JM, Smith JT, Akbarnia BA, Sponseller PD. Characterizing use of growth-friendly implants for early-onset scoliosis: a 10-year update. J Pediatr Orthop. 2020;40:e740–e746. DOI: 10.1097/BPO.0000000000001594.

32. Cobanoglu M, Yorgova P, Neiss G, Pawelek JB, Thompson GH, Skaggs DL, Jain VV, Akbarnia BA, Shah SA. Prevalence of junctional kyphosis in early onset scoliosis: can it be corrected at final fusion? Eur Spine J. 2021;30:3563–3569. DOI: 10.1007/s00586-021-06968-0.

33. Paloski MD, Sponseller PD, Akbarnia BA, Thompson GH, Skaggs DL, Pawelek JB, Nguyen PT, Odum SM. Is there an optimal time to distract dual growing rods? Spine Deform. 2014;2:467–470. DOI: 10.1016/j.jspd.2014.08.002.

34. Akbarnia BA, Pawelek JB, Cheung KMC, Demirkiran G, Elsebaie H, Emans JB, Johnston CE, Mundis GM, Noordeen H, Skaggs DL, Sponseller PD, Thompson GH, Yaszay B, Yazici M. Traditional Growing Rods Versus Magnetically Controlled Growing Rods for the Surgical Treatment of Early-Onset Scoliosis: A Case-Matched 2-Year Study. Spine Deform. 2014;2(6):493–497. DOI: 10.1016/j.jspd.2014.09.050.

35. Upasani VV, Parvaresh KC, Pawelek JB, Miller PE, Thompson GH, Skaggs DL, Emans JB, Glotzbecker MP. Age at initiation and deformity magnitude influence complication rates of surgical treatment with traditional growing rods in early-onset scoliosis. Spine Deform. 2016;4:344–350. DOI: 10.1016/j.jspd.2016.04.002.

36. Larson AN, Baky FJ, St Hilaire T, Pawelek J, Skaggs DL, Emans JB, Pahys JM. Spine deformity with fused ribs treated with proximal rib- versus spine-based growing constructs. Spine Deform. 2019;7:152–157. DOI: 10.1016/j.jspd.2018.05.011.

37. Matsumoto H, Fields MW, Roye BD, Roye DP, Skaggs D, Akbarnia BA, Vitale MG. Complications in the treatment of EOS: Is there a diference between rib vs. spine based proximal anchors? Spine Deform. 2021;9:247–253. DOI: 10.1007/s43390-020-00200-7.

38. Waldhausen JH, Redding G, White K, Song K. Complications in using the vertical expandable prosthetic titanium rib (VEPTR) in children. J Pediatr Surg. 2016;51:

39. –1750. DOI: 10.1016/j.jpedsurg.2016.06.014.

40. Peiro-Garcia A, Bourget-Murray J, Suarez-Lorenzo I, Ferri-De-Barros F, Parsons D. Early complications in vertical expandable prosthetic titanium rib and magnetically controlled growing rods to manage early onset scoliosis. Int J Spine Surg 2021;15:368–375. DOI: 10.14444/8048.

41. Upasani VV, Miller PE, Emans JB, Smith JT, Betz RR, Flynn JM, Glotzbecker MP. VEPTR implantation after age 3 is associated with similar radiographic outcomes with fewer complications. J Pediatr Orthop. 2016;36:219–225. DOI: 10.1097/BPO.0000000000000431.

42. El-Hawary R, Samdani A, Wade J, Smith M, Heflin JA, Klatt JW, Vitale MG, Smith JT. Rib-based distraction surgery maintains total spine growth. J Pediatr Orthop. 2015;36:841–846. DOI: 10.1097/BPO.0000000000000567.

43. El-Hawary R, Kadhim M, Vitale M, Smith J, Samdani A, Flynn JM. VEPTR implantation to treat children with early-onset scoliosis without rib abnormalities: early results from a prospective multicenter study. J Pediatr Orthop. 2017;37:e599–e605. DOI: 10.1097/BPO.0000000000000943.

44. Studer D, Buchler P, Hasler CC. Radiographic outcome and complication rate of 34 graduates after treatment with vertical expandable prosthetic titanium rib (VEPTR): a single center report. J Pediatr Orthop. 2019;39:e731–e736. DOI: 10.1097/BPO.0000000000001338.

45. Qiu C, Lott C, Agaba P, Cahill PJ, Anari JB. Lengthening less than 7 months leads to greater spinal height gain with rib-based distraction. J Pediatr Orthop. 2020;40:

46. e747–e752. DOI: 10.1097/BPO.0000000000001625.

47. Heflin JA, Cleveland A, Ford SD, Morgan JV, Smith JT. Use of rib-based distraction in the treatment of early-onset scoliosis associated with neurofibromatosis type 1 in the young child. Spine Deform. 2015;3:239–245. DOI: 10.1016/j.jspd.2014.10.003.

48. Saarinen AJ. Safety and Quality of Surgical Treatment of Early Onset Scoliosis. University of Turku, 2022.

49. Luhmann SJ, McCarthy RE. A comparison of Shilla Growth Guidance System and growing rods in the treatment of spinal deformity in children less than 10 years of age. J Pediatr Orthop. 2016;37:e567–e574. DOI: 10.1097/BPO.0000000000000751.

50. McCarthy RE, McCullough FL. Shilla Growth Guidance for early-onset scoliosis: results after a minimum of five years of follow-up. J Bone Joint Surg Am. 2015;97:

51. –1584. DOI: 10.2106/JBJS.N.01083.

52. Nazareth A, Skaggs DL, Illingworth KD, Parent S, Shah SA, Sanders JO, Andras LM. Growth guidance constructs with apical fusion and sliding pedicle screws (SHILLA) results in approximately 1/3rd of normal T1–S1 growth. Spine Deform. 2020;8:531–535. DOI: 10.1007/s43390-020-00076-7.

53. Михайловский М.В., Суздалов В.А., Садовой М.А. Хирургическое лечение пациентов со сколиозами 1-й декады жизни: обзор литературы // Хирургия позвоночника. 2016. Т. 13. № 3. С. 32–40. [Mikhailovsky MV, Suzdalov VA, Sadovoy MA. Surgical treatment of patients with scoliosis of the first decade of life: literature review. Hir. Pozvonoc. 2016;13(3):32–40]. DOI: 10.14531/ss2016.3.32-40.

54. Campbell RJ, Smith MD, Hell-Vocke AK. Expansion thoracoplasty: the surgical technique of opening-wedge thoracostomy. Surgical technique. J Bone Joint Surg Am. 2004;86-A Suppl 1:51–64. DOI: 10.2106/00004623-200400001-00008.

55. Михайловский М.В., Ульрих Э.В., Суздалов В.А., Долотин Д.Н., Рябых С.О., Лебедева М.Н. Инструментарий VEPTR в хирургии инфантильных и ювенильных сколиозов: первый отечественный опыт // Хирургия позвоночника. 2010. № 3. С. 31–41. [Mikhailovsky MV, Ulrikh EV, Suzdalov VA, Dolotin DN, Ryabykh SO, Lebedeva MN. VEPTR instrumentation in the surgery for infantile and juvenile scoliosis: first experience in Russia. Hir. Pozvonoc. 2010;(3):31–41]. DOI: 10.14531/ss2010.3.31-41.

56. Рябых С.О., Ульрих Э.В. Применение инструментария VEPTR при деформации позвоночника у детей младшего возраста, обусловленной нарушением сегментации // Гений ортопедии. 2012. № 3. С. 34–37. [Ryabykh SO, Ulrich EV. Usage of VEPTR instrumentation in treatment of spine deformities caused by failure of segmentation in young children. Genij Ortopedii. 2012;(3):34–37].

57. Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl). 2020;133:351–357. DOI: 10.1097/CM9.0000000000000614.

58. McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34:1–7. DOI: 10.1097/BPO.0b013e31829f92dc.

59. Ouellet J. Surgical technique: modern Luque trolley, a self-growing rod technique. Clin Orthop Relat Res. 2011;469:1356–1367. DOI: 10.1007/s11999-011-1783-4.

60. Alkhalife YI, Padhye KP, El-Hawary R. New technologies in pediatric spine surgery. Orthop Clin North Am. 2019;50:57–76. DOI: 10.1016/ j.ocl.2018.08.014.

61. Crawford CR 3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am. 2010;92:202–209. DOI: 10.2106/JBJS.H.01728.

62. Hardesty CK, Huang RP, El-Hawary R, Samdani A, Hermida PB, Bas T, Balioglu MB, Gurd D, Pawelek J, McCarthy R, Zhu F, Luhmann S. Early-onset scoliosis: updated treatment techniques and results. Spine Deform. 2018;6:467–472. DOI: 10.1016/j.jspd.2017.12.012.

63. Bumpass DB, Fuhrhop SK, Schootman M, Smith JC, Luhmann SJ. Vertebral body stapling for moderate juvenile and early adolescent idiopathic scoliosis: cautions and patient selection criteria. Spine. 2015;40:E1305–E1314. DOI: 10.1097/ BRS.0000000000001135.

64. Meza BC, Samuel AM, Albert TJ. The role of vertebral body tethering in treating skeletally immature scoliosis. HSS J. 2022;18:171–174. DOI: 10.1177/15563316211008866.

65. Takaso M, Moriya H, Kitahara H, Minami S, Takahashi K, Isobe K, Yamagata M, Otsuka Y, Nakata Y, Inoue M. New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children. J Orthop Sci. 1998;3:336–340. DOI: 10.1007/s007760050062.

66. Михайловский М.В., Альшевская А.А. Магнитно-контролируемые стержни в хирургии ранних сколиозов: обзор англоязычной литературы // Хирургия позвоночника. 2020. Т. 17. № 1. С. 25–41. [Mikhaylovskiy MV, Alshevskaya AA. Magnetically controlled growing rods in early onset scoliosis surgery: a review of English-language literature. Hir. Pozvonoc. 2020;17(1):25–41]. DOI: 10.14531/ss2020.1.25-41.

67. Thakar C, Kieser DC, Mardare M, Haleem S, Fairbank J, Nnadi C. Systematic review of the complications associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur Spine J. 2018;27:2062–2071. DOI: 10.1007/s00586-018-5590-4.

68. Bednar ED, Bergin B, Kishta W. Comparison of magnetically controlled growing rods with other distraction-based surgical technologies for early-onset scoliosis: a systematic review and meta-analysis. JBJS Rev. 2021;9:e20.00062. DOI: 10.2106/JBJS.RVW.20.00062.

69. Charroin C, Abelin-Genevois K, Cunin V, Berthiller J, Constant H, Kohler R, Aulagner G, Serrier H, Armoiry X. Direct costs associated with the management of progressive early onset scoliosis: Estimations based on gold standard technique or with magnetically controlled growing rods. Orthop Traumatol Surg Res. 2014;100:469–474. DOI: 10.1016/j.otsr.2014.05.006.

70. Polly DW Jr, Ackerman SJ, Schneider K, Pawelek JB, Akbarnia BA. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2016;8:457–465. DOI: 10.2147/CEOR.S113633.

71. Luhmann SJ, McAughey EM, Ackerman SJ, Bumpass DB, McCarthy RE. Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2018;10:179–187. DOI: 10.2147/CEOR.S152892.

72. Polly DW, Larson AN, Samdani AF, Rawlinson W, Brechka H, Porteous A, Marsh W, Ditto R. Cost-utility analysis of anterior vertebral body tethering versus spinal fusion in idiopathic scoliosis from a US integrated healthcare delivery system perspective. Clinicoecon Outcomes Res. 2021;13:175–190. DOI: 10.2147/CEOR.S289459.

73. Floman Y, El-Hawary R, Millgram MA, Lonner BS, Betz RR. Surgical management of moderate adolescent idiopathic scoliosis with a fusionless posterior dynamic deformity correction device: interim results with bridging 5–6 disc levels at 2 or more years of follow-up. J Neurosurg Spine. 2020;32:748–754. DOI: 10.3171/2019.11.SPINE19827.

74. Филатов Е.Ю., Рябых С.О., Савин Д.М. Алгоритм лечения врожденных аномалий позвоночника // Гений ортопедии. 2021. Т. 27. № 6. С. 717–726. [Filatov EYu, Ryabykh SO, Savin DM. Algorithm for the treatment of congenital anomalies of the spine. Genij Ortopedii. 2021;27(6):717–726]. DOI: 10.18019/1028-4427-2021-27-6-717-726.

75. Рябых С.О., Ульрих Э.В. Возможности коррекции односторонней гипоплазии грудной клетки при деформациях позвоночника у детей с большой потенцией роста // Гений ортопедии. 2011. № 4. С. 44–48. [Riabykh SO, Ulrich EV. Possibilities of unilateral chest hypoplasia correction for the spine deformities in children with great growth potency. Genij Ortopedii. 2011;4:44–48].

76. Михайловский М.В., Садовой М.А., Новиков В.В., Васюра А.С., Садовая Т.Н., Удалова И.Г. Современная концепция раннего выявления и лечения идиопатического сколиоза // Хирургия позвоночника. 2015. Т. 12. № 3. С. 13–18. [Mikhailovsky MV, Sadovoy MA, Novikov VV, Vasyura AS, Sadovaya TN, Udalova IG. The modern concept of early detection and treatment of idiopathic scoliosis. Hir. Pozvonoc. 2015;12(3):13–18]. DOI: 10.14531/ss2015.3.13-18.


Рецензия

Для цитирования:


Молотков Ю.В., Рябых С.О., Филатов Е.Ю., Сергеенко О.М., Хужаназаров И.Э., Эшкулов Д.И. Эффективность применения растущих систем в лечении сколиозов c ранним началом: систематизированный обзор. Хирургия позвоночника. 2023;20(2):6-20. https://doi.org/10.14531/ss2023.2.6-20

For citation:


Molotkov Yu.V., Ryabykh S.O., Filatov E.Yu., Sergeenko O.M., Khuzhanazarov I.E., Eshkulov D.I. The effectiveness of growth-friendly systems in the treatment of early onset scoliosis: a systematic review. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2023;20(2):6-20. https://doi.org/10.14531/ss2023.2.6-20



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)