Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Long-term results of treatment of patients with monosegmental stenosis of the spinal canal in the lumbar spine

https://doi.org/10.14531/ss2023.4.58-67

Abstract

Objective. To evaluate the long-term results of surgical treatment of patients with monosegmental stenosis of the lumbar spine after using minimally invasive and standard open techniques.

Material and Methods. The open cohort randomized prospective study included 132 patients. Long-term results were assessed in 110 patients, some patients discontinued participation in the study for natural reasons. Patients were operated on in 200–2011 in the volume of minimally invasive decompression and stabilization surgery (Group 1) and decompression and stabilization surgery through conventional posteromedial approach (Group 2). The following parameters were analyzed: Oswestry Disability Index and VAS pain intensity. Formation of an interbody block was assessed using the Tan scale, and the fatty degeneration of the paravertebral muscles – according to the Goutallier scale. Development or aggravation of the course of degeneration of the adjacent segment was also evaluated. Statistical analysis was performed using the R packages for data processing and plotting.

Results. At long-term follow-up (144 months), when assessing back pain according to VAS and ODI, a statistically significant difference p < 0.001 in favor of minimally invasive interventions was revealed. Both surgical methods resulted in high rates of fusion and low reoperation rates. In the group of minimally invasive surgical interventions, there is a lower incidence of fatty degeneration of the paravertebral muscles and damage to the adjacent segment.

Conclusions. Open and minimally invasive surgical interventions have comparable long-term clinical and morphological results. Open surgical interventions in the long term are fraught with aggravation of fatty degeneration of the paravertebral muscles and more frequent development of the adjacent level syndrome. Minimally invasive techniques are an effective and safe alternative to traditional open surgery and can reduce trauma, preserve the intact posterior support complex of the spine at adjacent levels, while performing adequate decompression and stabilization, followed by the formation of a bone block.

About the Authors

Sh. A. Akhmetyanov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

MD, PhD, Department of Neurosurgery No. 2



A. A. Azizkhonov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

clinical resident, Department of Neurosurgery No. 2



E. A. Mushkachev
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

junior researcher, Research Department of Neurovertebrology



A. J. Sanginov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

MD, PhD, Department of Neurosurgery No. 2



I. D. Isakov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

junior researcher, Research Department of Neurovertebrology



A. V. Peleganchuk
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan 17 Frunze str., Novosibirsk, 630091, Russia
Russian Federation

MD, PhD, researcher, Research Department of Neurovertebrology, Head of the Department of Neurosurgery No. 2



References

1. Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24:479–484. DOI: 10.1097/BSD.0b013e3182055cac.

2. Brodano GB, Martikos K, Lolli F, Gasbarrini A, Cioni A, Bandiera S, Di Silvestre M, Boriani S, Greggi T. Transforaminal lumbar interbody fusion in degenerative disc disease and spondylolisthesis grade I: minimally invasive versus open surgery. J Spinal Disord Tech. 2015;28:559–564. DOI: 10.1097/BSD.0000000000000034.

3. Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9:560–565. DOI: 10.3171/SPI.2008.9.08142.

4. Habib A, Smith ZA, Lawton CD, Fessler RG. Minimally invasive transforaminal lumbar interbody fusion: a perspective on current evidence and clinical knowledge. Minim Invasive Surg. 2012:2012:657342. DOI: 10.1155/2012/657342.

5. Wiltse LL, Spencer CW. New uses and refinements of the paraspinal approach to the lumbar spine. Spine. 1988;13:696–706. DOI: 10.1097/00007632-198806000-00019.

6. Gurr KR, McAfee PC. Cotrel-Dubousset instrumentation in adults. A preliminary report. Spine. 1988;13:510–520. DOI: 10.1097/00007632-198805000-00014.

7. Васюра А.С., Новиков В.В., Белозеров В.В., Удалова И.Г. Опыт применения гибридного инструментария при хирургическом лечении грудных идиопатических сколиозов с поясничным противоискривлением // Хирургия позвоночника. 2015. Т. 12. № 4. С. 30–35. [Vasyura AS, Novikov VV, Belozerov VV, Udalova IG. Experience in the use of hybrid instrumentation in surgical treatment of thoracic idiopathic scoliosis with lumbar countercurve. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2015;12(4):30–35]. DOI: 10.14531/ss2015.4.30-35.

8. Fan SW, Hu ZJ, Zhao FD, Zhao X, Huang Y, Fang X. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J. 2010;19:316–324. DOI: 10.1007/s00586-009-1191-6.

9. Кудрявцева И.П., Сафонова Г.Д., Бердюгин К.А. Состояние паравертебральных мышц при заболеваниях позвоночника (обзор литературы) // Современные проблемы науки и образования. 2015. № 5. С. 166. [Kudryavtseva IP, Safonova GD, Berdyugin KA. State of paravertebral muscles in spinal diseases (review). Modern Problems of Science and Education. 2015;(5)166].

10. Шнякин П.Г., Ботов А.В., Милехина И.Е., Руденко П.Г., Архипкин С.В. Проблема жировой дегенерации параспинальной мускулатуры у пациентов после операций по поводу дегенеративного стеноза // Гений ортопедии. 2021. Т. 27. № 6. С. 727–731. [Shnyakin PG, Botov AV, Milyokhina IE, Rudenko PG, Arkhipkin SV. The problem of adipose degeneration of the paraspinal muscles in patients after surgery for degenerative stenosis. Genij Ortopedii. 2021;27(6):727–731]. DOI: 10.18019/1028-4427-2021-27-6-727-731.

11. Бывальцев В.А., Калинин А.А. Возможности применения минимально-инвазивных дорсальных декомпрессивно-стабилизирующих вмешательств у пациентов с избыточной массой тела и ожирением // Вопросы нейрохирургии им Н.Н. Бурденко. 2018. Т. 82. № 5. С. 69–80. [Byval’tsev VA, Kalinin AA. Minimally invasive dorsal decompression-stabilization surgery in patients with overweight and obesity. Zh Vopr Neirokhir Im N N Burdenko. 2018;5:69–80]. DOI: 10.17116/neiro20188205169.

12. Ахметьянов Ш.А. Минимально-инвазивные декомпрессивно-стабилизирующие методы хирургического лечения моносегментарного стеноза поясничного отдела позвоночника: дис. … канд. мед. наук. Новосибирск, 2016. [Akhmetyanov ShA. Minimally invasive decompression and stabilization methods for surgical treatment of monosegmental lumbar spinal stenosis: PhD thesis. Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan. Novosibirsk, 2016].

13. Ахметьянов Ш.А., Крутько А.В. Результаты хирургического лечения дегенеративно-дистрофических поражений пояснично-крестцового отдела позвоночника // Современные проблемы науки и образования. 2015. № 5. С. 324. [Akhmetyanov ShA, Krutko AV. Results of surgical treatment of degenerative lesions of the lumbosacral spine. Modern Problems of Science and Education. 2015;(5):324].

14. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine. 2000;25:2940–2952. DOI: 10.1097/00007632-200011150-00017.

15. Fritzell P, Hagg O, Wessberg P, Nordwall A. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group. Spine. 2002;27:1131–1141. DOI: 10.1097/00007632-200206010-00002.

16. Le Huec JC, Hasegawa K. Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J. 2016;25:3630–3637. DOI: 10.1007/s00586-016-4485-5.

17. Tan GH, Goss BG, Thorpe PJ, Williams RP. CT-based classification of long spinal allograft fusion. Eur Spine J. 2007;16:1875–1881. DOI: 10.1007/s00586-007-0376-0.

18. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–1878. DOI: 10.1097/00007632-200109010-00011.

19. Schizas C, Theumann N, Burn A, Tansey R, Wardlaw D, Smith FW, Kulik G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine. 2010;35:1919–1924. DOI: 10.1097/BRS.0b013e3181d359bd.

20. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;(304):78–83. DOI: 10.1097/00003086-199407000-00014.

21. Xie L, Wu WJ, Liang Y. Comparison between minimally invasive transforaminal lumbar interbody fusion and conventional open transforaminal lumbar interbody fusion: an updated meta-analysis. Chin Med J (Engl). 2016;129:1969–1986. DOI: 10.4103/0366-6999.187847.

22. Wong AP, Smith ZA, Stadler JA 3rd, Hu XY, Yan JZ, Li XF, Lee JH, Khoo LT. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 2014;25:279–304. DOI: 10.1016/j.nec.2013.12.007.

23. Sun ZJ, Li WJ, Zhao Y, Qiu GX. Comparing minimally invasive and open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: a meta-analysis. Chin Med J (Engl). 2013;126:3962–3971.

24. Phan K, Rao PJ, Kam AC, Mobbs RJ. Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J. 2015;24:1017–1030. DOI: 10.1007/s00586-015-3903-4.

25. Lin Y, Chen W, Chen A, Li F. Comparison between minimally invasive and open transforaminal lumbar interbody fusion: a meta-analysis of clinical results and safety outcomes. J Neurol Surg A Cent Eur Neurosurg. 2016;77:2–10. DOI: 10.1055/s-0035-1554809.

26. Li A, Li X, Zhong Y. Is minimally invasive superior than open transforaminal lumbar interbody fusion for single-level degenerative lumbar diseases: a meta-analysis. J Orthop Surg Res. 2018;13:241. DOI: 10.1186/s13018-018-0941-8.

27. Heemskerk JL, Akinduro OO, Clifton W, Quinones-Hinojosa A, Abode-Iyamah KO. Long-term clinical outcome of minimally invasive versus open single-level transforaminal lumbar interbody fusion for degenerative lumbar diseases: a meta-analysis. Spine J. 2021;21:2049–2065. DOI: 10.1016/j.spinee.2021.07.006.

28. Lee E, Choi JA, Oh JH, Ahn S, Hong SH, Chai JW, Kang HS. Fatty degeneration of the rotator cuff muscles on pre- and postoperative CT arthrography (CTA): is the Goutallier grading system reliable? Skeletal Radiol. 2013;42:1259–1267. DOI: 10.1007/s00256-013-1660-1.

29. Yanik B, Keyik B, Conkbayir I. Fatty degeneration of multifidus muscle in patients with chronic low back pain and in asymptomatic volunteers: quantification with chemical shift magnetic resonance imaging. Skeletal Radiol. 2013;42:771–778. DOI: 10.1007/s00256-012-1545-8.

30. Engelken F, Wassilew GI, Kohlitz T, Brockhaus S, Hamm B, Perka C, Diederichs G. Assessment of fatty degeneration of the gluteal muscles in patients with THA using MRI: reliability and accuracy of the Goutallier and quartile classification systems. J Arthroplasty. 2014;29:149–153. DOI: 10.1016/j.arth.2013.04.045.

31. Mandelli F, Nuesch C, Zhang Y, F Halbeisen, Scharen S, Mundermann A, Netzer C. Assessing fatty infiltration of paraspinal muscles in patients with lumbar spinal stenosis: Goutallier classification and quantitative MRI measurements. Front Neurol. 2021;12:656487. DOI: 10.3389/fneur.2021.656487.

32. Fu CJ, Chen WC, Lu ML, Cheng CH, Niu CC. Comparison of paraspinal muscle degeneration and decompression effect between conventional open and minimal invasive approaches for posterior lumbar spine surgery. Sci Rep. 2020;10:14635. DOI: 10.1038/s41598-020-71515-8.

33. Crawford RJ, Filli L, Elliott JM, Nanz D, Fischer MA, Marcon M, Ulbrich EJ. Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol. 2016;37:742–748. DOI: 10.3174/ajnr.A4596.

34. Urrutia J, Besa P, Lobos D, Andia M, Arrieta C, Uribe S. Is a single-level measurement of paraspinal muscle fat infiltration and cross-sectional area representative of the entire lumbar spine? Skeletal Radiol. 2018;47:939–945. DOI: 10.1007/s0025 6-018-2902-z.

35. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine. 1996;21:941–944. DOI: 10.1097/00007632-199604150-00007.

36. Suwa H, Hanakita J, Ohshita N, Gotoh K, Matsuoka N, Morizane A. Postoperative changes in paraspinal muscle thickness after various lumbar back surgery procedures. Neurol Med Chir (Tokyo). 2000;40:151–154. DOI: 10.2176/nmc.40.151.

37. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine. 2005;30:123–129. DOI: 10.1097/01.brs.0000148999.21492.53.

38. Mori E, Okada S, Ueta T, Itaru Y, Maeda T, Kawano O, Shiba K. Spinous process-splitting open pedicle screw fusion provides favorable results in patients with low back discomfort and pain compared to conventional open pedicle screw fixation over 1 year after surgery. Eur Spine J. 2012;21:745–753. DOI: 10.1007/s00586-011-2146-2.

39. Lee SH, Park SW, Kim YB, Nam TK, Lee YS. The fatty degeneration of lumbar paraspinal muscles on computed tomography scan according to age and disc level. Spine J. 2017;17:81–87. DOI: 10.1016/j.spinee.2016.08.001.

40. Gille O, Jolivet E, Dousset V, Degrise C, Obeid I, Vital JM, Skalli W. Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine. 2007;32:1236–1241. DOI: 10.1097/BRS.0b013e31805471fe.

41. Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol (Lausanne). 2016;7:69. DOI: 10.3389/fendo.2016.00069.


Review

For citations:


Akhmetyanov Sh.A., Azizkhonov A.A., Mushkachev E.A., Sanginov A.J., Isakov I.D., Peleganchuk A.V. Long-term results of treatment of patients with monosegmental stenosis of the spinal canal in the lumbar spine. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2023;20(4):58-67. https://doi.org/10.14531/ss2023.4.58-67



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)