EXPERIMENTAL MODEL OF TRAUMATIC SPINAL CORD INJURY AND NEUROPROTECTIVE EFFECT OF KETAMINE IN ACUTE PHASE OF INJURY
https://doi.org/10.14531/ss2016.4.90-93
Abstract
Objective. To present experimental model of traumatic spinal cord injury and to assess the efficacy of ketamine for neuroprotection in multimodal treatment for spinal cord injury in acute phase.
Material and Methods. The study was performed in 60 rabbits with modeled acute spinal cord injury. The standard open spinal cord injury was inflicted in the lower thoracic spine with graduated impact strength and area using impact device. Further, the multimodal therapy was conducted. Motor function, reflexes, pelvic organ function, and skin sensitivity were assessed. Experimental animals were divided into several groups depending on ketamine therapy start time.
Results. The presented model of spinal cord injury is reproducible, graduated, same-type and similar to clinical injury. The model enables mastering the treatment for spinal cord injury sequelae. The method is easy to study and use, and does not require complex equipment. The study showed significantly better recovery of the motor function after early beginning of ketamine therapy.
Conclusion. Ketamine is an effective neuroprotectant in spinal injury, and its administration in the acute phase of traumatic spinal cord injury improves the results of treatment and prognosis.
About the Authors
Sergey Georgyevich VolkovRussian Federation
Evgeny Ivanovich Vereshchagin
Russian Federation
References
1. Гринь А.А. Проблемы организации и лечения больных с позвоночно-спинномозговой травмой (комментарий к статье А.Н. Баринова и Е.Н. Кондакова: Организация помощи пострадавшим с позвоночно-спинномозговой травмой в Архангельской области) // Нейрохирургия. 2011. № 3. С. 79-81.
2. Ларькин И.И., Преображенский А.С., Любавина А.Е., Пак А.И. Экспериментальная модель травматической тракционной миелопатии // Вестник экспериментальной и клинической хирургии. 2012. Т. V. № 2. С. 367-371.
3. Леонтьев М.А. Реабилитологический осмотр спинального пациента // Методические рекомендации для реабилитологов, врачей и методистов ЛФК. Новокузнецк, 2002.
4. Патент 2414005 Российская Федерация, МПКG09B 23/28 (2006.01). Устройство для моделирования очагового поражения головного мозга / Самохин А.Г., Кузьмин А.В., Ступак В.В., Васильев И.А., Плотникова И.В.; патентообладатель ФГУ «ННИИТО Росмедтехнологий». № 2009129577/14, заявл. 31.07.2009; опубл. 2010.03.2011, Бюл. № 7.
5. Шульга А.Е., Норкин И.А., Нинель В.Г., Пучиньян Д.М., Зарецков В.В., Коршунова Г.А., Островский В.В., Смолькин А.А. Современные аспекты патогенеза травмы спинного мозга и стволов периферических нервов // Рос. физиол. журнал им. И.М. Сеченова. 2014. № 2. С. 145-160.
6. Akhtar AZ, Pippin JJ, Sandusky CB. Animal models in spinal cord injury: a review. Rev Neurosci. 2008;19:47-60.
7. Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995; 15(4):961-973.
8. Awad H, Ankeny DP, Guan Z, Wei P, McTigue DM, Popovich PG. A mouse model of ischemic spinal cord injury with delayed paralysis caused by aortic cross-clamping. Anesthesiology. 2010;113:880-891. DOI: 10.1097/ALN.0b013e3181ec61ee.
9. Battistuzzo CR, Callister RJ, Callister R, Galea MP. A systematic review of exercise training to promote locomotor recovery in animal models of spinal cord injury. J Neurotrauma. 2012;29:1600-1613. DOI: 10.1089/neu.2011.2199.
10. Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E, Hutzler P, Kochs E. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96:524-531. DOI: 10.1097/00000539-200302000-00041.
11. Hukuda S, Wilson CB. Experimental cervical myelopathy: effects of compression and ischemia on the canine cervical spinal cord. J Neurosurg. 1972;37:631-652.
12. Janssen L, Hansebout RR. Pathogenesis of spinal cord injury and never treatments. A review. Spine. 1989;14:23-32.
13. Lee JS, Hong JM, Kim YJ. Ischemic preconditioning to prevent lethal ischemic spinal cord injury in a swine model. J Invest Surg. 2008;21:209-214. DOI: 10.1080/08941930802262249.
14. Shapira Y, Artru AA, Lam AM. Ketamine decreases cerebral infarct volume and improves neurological outcome following experimental head trauma in rats. J Neurosurg Anesthesiol 1992;4:231-240.
15. Vaquero C, Arce N, Agudo J, Martinez R, Garjal C, Diago MV. [Evaluation of ischemic injury of the spinal cord following endoprosthesis implantation in the thoraco-abdominal aorta on a rat model]. Rev Port Cir Cardiotorac Vasc. 2007;14:33-37. In Portuguese.
16. Vijayaprakash KM, Sridharan N. An experimental spinal cord injury rat model using customized impact device: A cost-effective approach. J Pharmacol Pharmacother. 2013;4:211-213. DOI: 10.4103/0976-500X.114607.
17. Wang W, Yang T, Lei M, Pei F, Liu L. [Establishment of tractive spinal cord injury model in rats with a novel spinal distractor]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011;25:705-710. In Chinese.
18. Watson BD, Prado R, Dietrich WD, Ginsberg MD, Green BA. Photochemically induced spinal cord injury in the rat. Brain Res. 1986;367:296-300. DOI: 10.1016/0006-8993(86)91606-9.
19. Yeo SJ, Hwang SN, Park SW, Kim YB, Min BK, Kwon JT, Suk JS. Development of a rat model of graded contusive spinal cord injury using a pneumatic impact device. J Korean Med Sci. 2004;19:574-580.
Review
For citations:
Volkov S.G., Vereshchagin E.I. EXPERIMENTAL MODEL OF TRAUMATIC SPINAL CORD INJURY AND NEUROPROTECTIVE EFFECT OF KETAMINE IN ACUTE PHASE OF INJURY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2016;13(4):90-93. https://doi.org/10.14531/ss2016.4.90-93