Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Interbody cervical cage implantation into cadaveric model of the ram spine: biomechanical tests

https://doi.org/10.14531/ss2025.3.97-103

Abstract

Objective. To evaluate the biomechanical properties of biodegradable poly-L-lactide cages on a cadaveric model of the cattle cervical spine.

Material and Methods. Prototypes of interbody cervical implants were developed on the Ender 3v2 3D printer. The mechanical characteristics of experimental cage specimens were evaluated, and the orientation of the specimens during 3D-printing was investigated. Single-level cervical discectomy with fixation by a cage made of poly-L-lactide was performed in 12 cadaveric models. Biomechanical tests of  the operated vertebral segment were carried out under cyclic loading conditions.

Results. In this type of testing, the developed cervical cage models demonstrated high deformation stability under compression load, and the  absence of deformation and migration in static and cyclic tests.

Conclusion. The development of biocompatible biodegradable cervical cages is a promising direction in medicine. Given the high rate of postoperative complications associated with migration and subsidence of cages made of non-resorbable materials, biodegradable implants may become a competitive analog for cervical segment fixation. 

About the Authors

O. A. Spirin
Russian Scientific Center of Surgery n.a. Acad. B.V. Petrovsky
Russian Federation

Oleg Artemovich Spirin, junior researcher of the Spine Surgery Department, 

2 Abrikosovsky Pereulok, Moscow, 119991, Russia



A. G. Aganesov
Russian Scientific Center of Surgery n.a. Acad. B.V. Petrovsky
Russian Federation

Alexander Georgyevich Aganesov, DMSc, Prof., Chief of the Spine Surgery Department

2 Abrikosovsky Pereulok, Moscow, 119991, Russia



M. M. Aleksanyan
Russian Scientific Center of Surgery n.a. Acad. B.V. Petrovsky
Russian Federation

Mark Mikaelovich Aleksanyan, MD, PhD, senior researcher of the Spine Surgery Department,

2 Abrikosovsky Pereulok, Moscow, 119991, Russia



S. A. Makarov
Russian Scientific Center of Surgery n.a. Acad. B.V. Petrovsky
Russian Federation

Sergei Aleksandrovich Makarov, researcher of the Spine Surgery Department, 

2 Abrikosovsky Pereulok, Moscow, 119991, Russia



N. G. Sedush
National Research Center “Kurchatov Institute”
Russian Federation

Nikita Gennadyevich Sedush, PhD in Physics and Mathematics, Head of the Laboratory of Polymeric Materials, 

1 Akademika Kurchatova Square, Moscow, 123182, Russia



A. E. Krupnin
National Research Center “Kurchatov Institute”
Russian Federation

Arthur Evgenyevich Krupnin, junior researcher of the Laboratory of Polymeric Materials, Acting Head of the Resource Center for Additive and Virtual Technologies, 1 Akademika Kurchatova Square, Moscow, 123182, Russia



V. V. Pobezhimov
National Research Center “Kurchatov Institute”
Russian Federation

Vsevolod Vasilyevich Pobezhimov, research assistant of the Resource Center for Additive and Virtual Technologies, 
1 Akademika Kurchatova Square, Moscow, 123182, Russia



References

1. Аганесов А.Г., Арестов С.О., Асютин Д.С., Бадалов Н.Г., Бородулина И.В., Вершинин А.В., Вершинина Н.С., Гринь А.А., Гуща А.О., Древаль М.Д., Кащеев А.А., Колесов С.В., Коновалов Н.А., Кордонский А.Ю., Королишин В.А., Кротенкова И.А., Крутько А.В., Курочкина Н.С., Мартынова М.А., Назаренко А.Г., Назаметдинова Д.М., Петросян Д.В., Полторако Е.Н., Юсупова А.Р. Хирургия дегенеративных поражений позвоночника: национальное руководство. Под ред. А.О. Гущи, Н.А. Коновалова, А.А. Гриня. Москва, 2019. [Aganesov AG, Arestov SO, Asyutin DS, Aganesov AG, Arestov SO, Asyutin DS, Badalov NG, Borodulina IV, Vershinin AV, Vershinina NS, Grin AA, Gushcha AO, Dreval MD, Kashcheev AA, Kolesov SV, Konovalov NA, Kordonsky AYu, Korolishin VA, Krotenkova IA, Krutko AV, Kurochkina NS, Martynova MA, Nazarenko AG, Nazametdinova DM, Petrosyan DV, Poltorako EN, Yusupova AR. Surgery of degenerative lesions of the spine: national manual. Ed. by AO Gushcha, NA Konovalov, AA Grin. Moscow, 2019. I]. SBN: 978-5-9704-5001-7

2. Ваккаро А.Р., Барон И.М. Хирургия позвоночника. Оперативная техника. Пер. с англ. под ред. Ю.А. Щербука. Москва, 2015. [Vaccaro AR, Baron IM. Spine surgery. Operative technique. Trans. from English ed by Yu.A. Shcherbuk. Moscow, 2015. ISBN: 978-5-91839-068-9.

3. Bohlman HH, Emery SE, Goodfellow DB, Jones PK. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am. 1993;75(9):1298–307. DOI: 10.2106/00004623-199309000-00005

4. Emery SE, Bohlman HH, Bolesta MJ, Jones PK. Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy. Two to seventeen-year follow-up. J Bone Joint Surg Am. 1998;80(7):941–951. DOI: 10.2106/00004623-199807000-00002

5. Гринь А.А., Касаткин Д.С. Несостоятельная фиксация шейного отдела позвоночника при его травмах и заболеваниях. Клиническая практика. 2017;2(30):49–55. [Grin AA, Kasatkin DS. Cervical spine insolvent fixation in the cases of its traumas and diseases. Journal of Clinical Practice. 2017;2(30):49–55]. EDN: YLYKMU

6. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–29. DOI: 10.1016/j.jocn.2017.06.062

7. Ahmed AF, Al Dosari MAA, Al Kuwari A, Khan NM. The outcomes of stand alone polyetheretherketone cages in anterior cervical discectomy and fusion. Int Orthop. 2020;45:173–180. DOI: 10.1007/s00264-020-04760-1

8. Аржакова О.В., Аржаков М.С., Бадамшина Э.Р., Брюзгина Е.Б., Брюзгин Е.В., Быстрова А.В., Ваганов Г.В., Василевская В.В., Вдовиченко А.Ю., Галлямов М.О., Гумеров Р.А., Диденко А.Л., Зефиров В.В., Карпов С.В., Комаров П.В., Куличихин В.Г., Курочкин С.А., Ларин С.В., Малкин А.Я., Миленин С.А., Музафаров А.М., Молчанов В.С., Навроцкий А.В., Новаков И.А., Панарин Е.Ф., Панова И.Г., Потемкин И.И., Светличный В.М., Седуш Н.Г., Серенко О.А., Успенский С.А., Филиппова О.Е., Хохлов А.Р., Чвалун С.Н., Шейко С.С., Шибаев А.В., Эльманович И.В., Юдин В.Е., Якиманский А.В., Ярославов А.А. Полимеры будущего. Успехи химии. 2022;91(12):RCR5062. [Arzhakova OV, Arzhakov MS, Badamshina ER, Bryuzgina EB, Bryuzgin EV, Bystrova AV, Vaganov GV, Vasilevskaya VV, Vdovichenko AYu, Gallyamov MO, Gumerov RA, Didenko AL, Zefirov VV, Karpov SV, Komarov PV, Kulichikhin VG, Kurochkin SA, Larin SV, Malkin AYa, Milenin SA, Muzafarov AM, Molchanov VS, Navrotsky AV, Novakov IA, Panarin EF, Panova IG, Potemkin II, Svetlichny VM, Sedush NG, Serenko OA, Uspensky SA, Filippova OE, Khokhlov AR, Chvalun SN, Sheiko SS, Shibaev AV, Elmanovich IV, Yudin VE, Yakimansky AV, Yaroslavov AA. Polymers of the future. Uspekhi Khimii (Russ. Chem. Bev). 2022;91(12):RCR5062]. DOI: 10.57634/RCR5062 EDN: EFUAAB

9. Crouzier T, Sailhan F, Becquart P, Guillot R, Logeart-Avramoglou D, Picart C. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials. 2011;32:7543–7554. DOI: 10.1016/j.biomaterials.2011.06.062

10. Haaparanta AM, Haimi S, Ellä V, Hopper N, Miettinen S, Suuronen R, Kellomäki M. Porous polylactide/beta-tricalcium phosphate composite scaffolds for tissue engineering applications. J Tissue Eng Regen Med. 2010;4:366–373. DOI: 10.1002/term.249

11. Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials. 2022;288:121699. DOI: 0.1016/j.biomaterials.2022.121699

12. Teunissen M, van der Veen AJ, Smit TH, Tryfonidou MA, Meij BP. Effect of a titanium cage as a stand-alone device on biomechanical stability in the lumbosacral spine of canine cadavers. Vet J. 2017;220:17–23. DOI: 10.1016/j.tvjl.2016.12.007

13. Sun B, Han Q, Sui F, Zhang A, Liu Y, Xia P, Wang J, Yang X. Biomechanical analysis of customized cage conforming to the endplate morphology in anterior cervical discectomy fusion: A finite element analysis. Heliyon. 2023;9:e12923. DOI: 10.1016/j.heliyon.2023.e12923

14. Moussa A, Tanzer M, Pasini D. Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence. J Mech Behav Biomed Mater. 2018;85:134–151. DOI: 10.1016/j.jmbbm.2018.05.040

15. Wang Y, Liu Y, Zhang A, Han Q, Jiao J, Chen H, Gong X, Luo W, Yue J, Zhao X, Wang J, Wu M. Biomechanical evaluation of a novel individualized zero-profile cage for anterior cervical discectomy and fusion: a finite element analysis. Front Bioeng Biotechnol. 2023;11:1229210. DOI: 10.3389/fbioe.2023.1229210


Review

For citations:


Spirin O.A., Aganesov A.G., Aleksanyan M.M., Makarov S.A., Sedush N.G., Krupnin A.E., Pobezhimov V.V. Interbody cervical cage implantation into cadaveric model of the ram spine: biomechanical tests. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2025;22(3):97-103. (In Russ.) https://doi.org/10.14531/ss2025.3.97-103



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)