THE FEATURES OF CANINE M. PSOAS MINOR HISTOGENESIS IN THE PERIOD OF ACTIVE GROWTH DURING MODELING THE LUMBAR SPINE SCOLIOSIS
https://doi.org/10.14531/ss2016.3.102-107
Abstract
Objective. To identify the features of m. psoas minor histogenesis in growing dogs under conditions of the development of spinal scoliotic deformity.
Material and Methods. Experiments were performed on 16 four-month-old mongrel dogs, males and females. In animals of Series I, the deformity was created by gangliotomy at five lumbar motion segments (L2-L6), in animals of Series II - by fixation of adjacent L3-L6 vertebral bodies with nickel titanium staples possessing thermochemical shape memory effect, and in animals of Series III - by implantation of titanium plates into the subchondral zone of vertebral growth plates, together with the staples. The control series included intact age-matched dogs. The X-ray examination of animals of Series I-III was performed in dorsoventral and lateral views at days 14, 30, 60, 90, and 180 after surgery. Paraffin and semi-thin sections of m. psoas minor from concave and convex sides of the lumbar scoliotic deformity zone were studied using light microscopy in 3 and 6 months after surgery.
Results. Standard signs of degenerative-dystrophic changes and reparation by restitution/substitution type characterize the histogenesis of m. psoas mino r. The most marked destructive changes in the muscles on both sides of the deformity retained in the long-term only in animals of Series III.
Conclusions. The study results can be used for evaluating the adaptation and plasticity potential of paravertebral muscles, as well as for developing models of the spine scoliotic deformity.
About the Authors
Galina Nikolaevna FilimonovaRussian Federation
Andrey Evgenyevich Kobyzev
Russian Federation
Vitaly Viktorovich Krasnov
Russian Federation
References
1. Анашев Т.С. Сколиотическая болезнь: распространенность и частота обращаемости за специализированной помощью в НИИТО // Травматология жэне ортопедия. 2007. № 1. С. 76-80.
2. Витензон А.С., Скоблин А.А., Алексеенко И.Г. Изменение функции мышц туловища и нижних конечностей при идиопатическом сколиозе II-III степени // Хирургия позвоночника. 2007. № 3. C. 31-35.
3. Гайворонский Г.И. Способ получения экспериментальной модели структурального сколиоза. Патент № RU 489504. Дата подачи заявки 01.03.1974; дата публ. 30.10.1975, Бюл. № 40.
4. Гайдышев И.П. Свидетельство о регистрации программы для ЭВМ № 2002611109, М., 28.06.2002.
5. Зайдман А.М. Молекулярно-генетические механизмы развития сколиотической болезни // Проблемы позвоночника и спинного мозга: Тез. докл. Всерос. науч.-практ. конф., посвящ. 50-летию Новосибирского НИИТО, 75-летию со дня рожд. проф. Я.Л. Цивьяна, 80-летию со дня рожд. проф. К.И. Харитоновой. Новосибирск, 1996. С. 77-78.
6. Зайдман А.М., Корель А.В., Новиков В.В., Михайловский М.В. Этиология и патогенез идиопатического сколиоза II-IV степеней // Хирургия позвоночника - полный спектр: М-лы науч. конф., посвящ. 40-летию отделения патологии позвоночника ЦИТО. М., 2007. С. 185-186.
7. Кобызев А.Е. Модель формирования сколиотической деформации позвоночного столба методом сегментарного нарушения проницаемости субхондральной зоны позвонков // Гений ортопедии. 2012. № 3. С. 131-133.
8. Кобызев А.Е., Рябых С.О. Способ формирования сколиотической деформации позвоночного столба и устройство для его осуществления. Патент № RU 2483689. Дата подачи заявки 26.09.2011; дата публ. 10.06.2013, Бюл. № 16.
9. Кобызев А.Е., Ступина Т.А., Краснов В.В. Экспериментально-гистологическое исследование межпозвоночного диска при моделировании сколиоза у собак в период активного роста // Современные проблемы науки и образования. 2015. № 2-1. С. 39.
10. Латыпов А.Л., Латыпова Н.А. Врожденная мышечная дисплазия как этиологический фактор сколиоза // Актуальные вопросы профилактики и лечения сколиоза у детей: М-лы Всесоюз. симпозиума. М., 1984. С. 19-21.
11. Мовшович И.А. Морфологические особенности патогенеза и принципы лечения сколиоза // Актуальные вопросы профилактики и лечения сколиоза у детей: М-лы Всесоюз. симпозиума. М., 1984. С. 9-12.
12. Одинцова И.А., Чепурненко М.Н., Комарова А.С. Миосателлитоциты - камбиальный резерв поперечно-полосатой мышечной ткани // Гены и клетки. 2014. Т. 9. № 1. С. 6-14.
13. Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11:1859-1874.
14. Becchetti S, Parodi V, Naselli A. Importanza della componente muscolare nella cinesiologia del rachide toracico scoliotico in crescita. Min. Ortop. 1993;44:535-539.
15. Kurunlahti M, Tervonen O, Vanharanta H, Ilkko E, Suramo I. Association of atherosclerosis with low back pain and the degree of disc degeneration. Spine. 1999;24:2080-2084. DOI: 10.1097/00007632-199910150-00003.
16. Le Grand F, Rudnicki M. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19:628-633.
17. Parise G, McKinnell IW, Rudnicki MA. Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve. 2008;37:611-619. DOI: 10.1002/mus.20995.
18. Shafaq N, Suzuki A, Matsumura A, Terai H, Toyoda H, Yasuda H, Ibrahim M, Nakamura H. Asymmetric degeneration of paravertebral muscles in patients with degenerative lumbar scoliosis. Spine. 2012;37:1398-1406. DOI: 10.1097/BRS.0b013e31824c767e.
19. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23-67. DOI: 10.1152/physrev.00043.2011.
Review
For citations:
Filimonova G.N., Kobyzev A.E., Krasnov V.V. THE FEATURES OF CANINE M. PSOAS MINOR HISTOGENESIS IN THE PERIOD OF ACTIVE GROWTH DURING MODELING THE LUMBAR SPINE SCOLIOSIS. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2016;13(3):102-107. https://doi.org/10.14531/ss2016.3.102-107