Analysis of the causes of subsidence of modern expandable cages for vertebral body replacement in the surgical treatment of thoracolumbar spine injuries
https://doi.org/10.14531/ss2025.4.6-18
Abstract
Objective. To analyze the causes of subsidence of modern support cages for vertebral body replacement in the early postoperative period after surgical treatment of thoracolumbar spine injuries.
Materials and Methods. A retrospective analysis of the data of 46 patients operated on in a single surgical session for unstable injuries of the thoracolumbar spine using a telescopic extendable vertebral body cage was performed. The degree of cage subsidence was assessed according to the criteria of Marchi et al.: penetration of the implant into the body of the adjacent cranial or caudal vertebral by 25% – grade 1,
25–50% – grade 2, 50–70% – grade 3, 75–100% – grade 4. A comparative assessment of demographic, clinical, and radiographic parameters was performed in patients with and without cage subsidence within one year after surgery.
Results. Implant subsidence was detected in 76.5% (n = 13) of patients intraoperatively and in 23.5% (n = 4) after 4 months during an outpatient appointment. Subsidence into the cranial body prevailed (76%, n = 13). The anterior/posterior sequence of surgery stages combined with osteopenia and osteoporosis dominated in the study group (83.3%, n = 10). Quantitative parameters such as age, segmental angle, ROI in HU, surface contact area index, as well as qualitative parameters such as female gender, period of injury, and its low-energy nature had statistically significant differences between the study and control groups (p < 0,05). The augmentation of the screws and the length of fixation did not affect the formation of subsidence, but were associated with its magnitude.
Conclusion. The use of modern expandable body replacement cages for reconstruction of the anterior spinal column leads to their subsidence in some cases. Patient age, female gender, reduced bone density, the area of the bone-implant contact, anterior/posterior stabilization, and the late period of injury significantly affect the formation of subsidence when using expandable vertebral body replacement cages. A mean implant-to-vertebral endplate contact area ratio of less than 0.4 is a promising predictor of subsidence which requires further study.
About the Authors
A. D. LastevskiyRussian Federation
Alexey Dmitrievich Lastevskiy, MD, PhD, deputy medical director, trauma orthopaedist, neurosurgeon of Neurosurgical Department No.1,
17 Frunze str., Novosibirsk, 630091, Russia
K. A. Anikin
Russian Federation
Kirill Alexandrovich Anikin, neurosurgeon, trauma orthopaedist, Neurosurgical Department No.1,
17 Frunze str., Novosibirsk, 630091, Russia
Sh. A. Akhmetyanov
Russian Federation
Shamil Alfirovich Akhmetyanov, MD, PhD, neurosurgeon, head of the Neurosurgical Department No. 1, senior researcher of the Research Department of Neurosurgery,
17 Frunze str., Novosibirsk, 630091, Russia
N. N. Borisov
Russian Federation
Norayr Norayrovich Borisov, neurosurgeon, Neurosurgical Department No. 1, junior researcher of the Research Department of Neurosurgery,
17 Frunze str., Novosibirsk, 630091, Russia
L. E. Kuchuk
Russian Federation
Leonid Evgenyevich Kuchuk, neurosurgeon, Neurosurgical Department No. 1, junior researcher of the Research Department of Neurosurgery,
17 Frunze str., Novosibirsk, 630091, Russia
Zh. A. Nazarov
Russian Federation
Zhorakhan Anvarovich Nazarov, neurosurgeon, Neurosurgical Department No. 1, junior researcher of the Research Department of Neurosurgery,
17 Frunze str., Novosibirsk, 630091, Russia
V. V. Rerikh
Russian Federation
Viktor Viktorovich Rerikh, DMSc, chief researcher,
17 Frunze str., Novosibirsk, 630091, Russia
References
1. Vercoulen TFG, Niemeyer MJS, Peuker F, Verlaan JJ, Oner FC, Sadiqi S. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: A systematic review. Brain Spine. 2024;4:102745. DOI: 10.1016/j.bas.2024.102745
2. Verheyden AP, Spiegl UJ, Ekkerlein H, Gercek E, Hauck S, Josten C, Kandziora F, Katscher S, Kobbe P, Knop C, Lehmann W, Meffert RH, Müller CW, Partenheimer A, Schinkel C, Schleicher P, Scholz M, Ulrich C, Hoelzl A. Treatment of fractures of the thoracolumbar spine: recommendations of the spine section of the German society for orthopaedics and trauma (DGOU). Global Spine J. 2018;8(2 Suppl):34S–45S. DOI: 10.1177/2192568218771668
3. Joaquim AF, Patel AA, Schroeder GD, Vaccaro AR. Clinical application and cases examples of a new treatment algorithm for treating thoracic and lumbar spine trauma. Spinal Cord Ser Cases. 2018;4:56. DOI: 10.1038/s41394-018-0093-4
4. Blattert TR, Schnake KJ, Gonschorek O, Gercek E, Hartmann F, Katscher S, Mörk S, Morrison R, Müller M, Partenheimer A, Piltz S, Scherer MA, Ullrich BW, Verheyden A, Zimmermann V. Nonsurgical and surgical management of osteoporotic vertebral body fractures: recommendations of the spine section of the German society for orthopaedics and trauma (DGOU). Global Spine J. 2018;8(2 Suppl):50S–55S. DOI: 10.1177/2192568217745823
5. Spiegl U., Jarvers JS., Heyde CE, Josten C. Osteoporotic vertebral body fractures of the thoracolumbar spine: indications and techniques of a 360°-stabilization. Eur J Trauma Emerg Surg. 2017;43:27–33. DOI: 10.1007/s00068-016-0751-9
6. Lang S, Neumann C, Schwaige, C, Voss A, Alt V, Loibl M, Kerschbaum M. Radiological and mid- to long-term patient-reported outcome after stabilization of traumatic thoraco-lumbar spinal fractures using an expandable vertebral body replacement implant. BMC Musculoskelet Disord. 2021;22:744. DOI: 10.1186/s12891-021-04585-y
7. Lau D, Song Y, Guan Z, La Marca F, Park P. Radiological outcomes of static vs expandable titanium cages after corpectomy: A retrospective cohort analysis of subsidence. Neurosurgery. 2013;72:529–539. DOI: 10.1227/NEU.0b013e318282a558
8. Eleraky MA, Duong HT, Esp E, Kim KD. Expandable versus nonexpandable cages for thoracolumbar burst fracture. World Neurosurg. 2011;75:149–154. DOI: 10.1016/j.wneu.2010.09.018
9. Lee GJ, Lee JK, Hur H, Jang JW, Kim TS, Kim SH. Comparison of clinical and radiologic results between expandable cages and titanium mesh cages for thoracolumbar burst fracture. J Korean Neurosurg Soc. 2014;55:142–147. DOI: 10.3340/jkns.2014.55.3.142
10. Graillon T, Rakotozanany P, Blondel B, Adetchessi T, Dufour H, Fuentes S. Circumferential management of unstable thoracolumbar fractures using an anterior expandable cage, as an alternative to an iliac crest graft, combined with a posterior screw fixation: Results of a series of 85 patients. Neurosurg Focus. 2014;37:E10. DOI: 10.3171/2014.5.FOCUS1452
11. Arts MP, Peul WC. Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery, 2008;63:537–545. DOI: 10.1227/01.NEU.0000325260.00628.DC
12. Parisien A, Wai EK, ElSayed MSA, Frei H. Subsidence of spinal fusion cages: a systematic review. Int J Spine Surg. 2022;16:1103–1118. DOI: 10.14444/8363
13. Terai H, Takahashi S, Yasuda H, Konishi S, Maeno T, Kono H, Matsumura A, Namikawa T, Kato M, Hoshino M, Tamai K, Toyoda H, Suzuki A, Nakamura H. Differences in surgical outcome after anterior corpectomy and reconstruction with an expandable cage with rectangular footplates between thoracolumbar and lumbar osteoporotic vertebral fracture. N Am Spine Soc J. 2021;6:100071. DOI: 10.1016/j.xnsj.2021.100071
14. Ullrich BW, Schenk P, Spiegl UJ, Mendel T, Hofmann GO. Hounsfield units as predictor for cage subsidence and loss of reduction: following posterior-anterior stabilization in thoracolumbar spine fractures. Eur Spine J. 2018;27:3034–3042. DOI: 10.1007/s00586-018-5792-9
15. Schömig F, Becker L, Schönnagel L, Völker A, Disch AC, Schnake KJ, Pumberger M. Avoiding spinal implant failures in osteoporotic patients: a narrative review. Global Spine J. 2023;13(1_suppl):52S–58S. DOI: 10.1177/21925682231159066
16. Schnake KJ, Stavridis SI, Kandziora F. Five-year clinical and radiological results of combined anteroposterior stabilization of thoracolumbar fractures. J Neurosurg Spine. 2014;20:497–504. DOI: 10.3171/2014.1.SPINE13246
17. Середа А.П., Андрианова М.А. Рекомендации по оформлению дизайна исследования. Травматология и ортопедия России. 2019;25(3):165–184. [Sereda AP, Andrianova MA. Study design guidelines. Traumatology and Orthopedics of Russia. 2019;25(3):165–184. In Russian]. DOI: 10.21823/2311-2905-2019-25-3-165-184 EDN: NJCXSG
18. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine. 2013;38:2028–2037. DOI: 10.1097/brs.0b013e3182a8a381
19. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine, 2013;19:110–118. DOI: 10.3171/2013.4.SPINE12319
20. McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine. 1994;19:1741–1744. DOI: 10.1097/00007632-199408000-00014
21. Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of Hounsfield unit values for assessment of bone quality prior to spinal instrumentation a review of current literature. Spine. 2019;44:E239–E244. DOI: 10.1097/BRS.0000000000002813
22. Hasegawa K, Abe M, Washio T, Hara T. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine. 2001;26:957–963. DOI: 10.1097/00007632-200104150-00022
23. Takeuchi T, Yamagishi K, Konishi K, Sano H, Takahashi M, Ichimura S, Kono H, Hasegawa M, Hosogane N. Radiological evaluation of combined anteroposterior fusion with vertebral body replacement using a minimally invasive lateral approach for osteoporotic vertebral fractures: verification of optimal surgical procedure. J Clin Med. 2022;11:629. DOI: 10.3390/jcm11030629
24. Taiji R, Takami M, Yukawa Y, Hashizume H, Minamide A, Nakagawa Y, Nishi H, Iwasaki H, Tsutsui S, Okada M, Okada S, Teraguchi M, Murata S, Kozaki T, Yamada H. A short-segment fusion strategy using a wide-foot-plate expandable cage for vertebral pseudarthrosis after an osteoporotic vertebral fracture. J Neurosurg Spine. 2020;33:862–869. DOI: 10.3171/2020.5.SPINE2062
25. Segi N, Nakashima H, Kanemura T, Satake K, Ito K, Tsushima M, Tanaka S, Ando K, Machino M, Ito S, Yamaguchi H, Koshimizu H, Tomita H, Ouchida J, Morita Y, Imagama S. Comparison of outcomes between minimally invasive lateral approach vertebral reconstruction using a rectangular footplate cage and conventional procedure using a cylindrical footplate cage for osteoporotic vertebral fracture. J Clin Med. 2021;10:5664. DOI: 10.3390/jcm10235664
26. Okuwaki S, Tatsumura M, Eto F, Funayama T, Yamazaki M. Usefulness of the round endcap expandable cage placed on the vertebral ring apophysis in anterior spinal reconstruction. Cureus. 2022;14:e23586. DOI: 10.7759/cureus.23586
27. Iwata S, Kotani T, Sakuma T, Iijima Y, Okuwaki S, Ohyama S, Maki S, Eguchi Y, Orita S, Inage K, Shiga Y, Inoue M, Akazawa T, Minami S, Ohtori S. Risk factors for cage subsidence in minimally invasive lateral corpectomy for osteoporotic vertebral fractures. Spine Surg Relat Res. 2023;7:356–362. DOI: 10.22603/ssrr.2022-0215
28. Sircar K, Weber M, Walter SG, Ott N, Prescher A, Eysel P, Kernich N. Torque forces of expandable titanium vertebral body replacement cages during expansion and subsidence in the osteoporotic lumbar spine. Clin Biomech (Bristol). 2024;114:106239. DOI: 10.1016/j.clinbiomech.2024.106239
29. Pekmezci M, Tang JA, Cheng L, Modak A, McClellan T, Buckley JM, Ames CP. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model, part I: endplate force characteristics. J Neurosurg Spine. 2012;17:321–326. DOI: 10.3171/2012.7.SPINE12171
30. Reinke A, Magudya B, Schmid G, Stemmer B, Kraus M, Wild AT, Shiban E. One year experience with the use of a new expendable cage and large endplates for thoracolumbar vertebral body replacement. J Surgery. 2022;2:1070. [Electronioc resource]. Available at: www.journalonsurgery.org
31. Ulrich BW, Schenk P, Spiegl UJ, Mendel T, Hofmann GO. Hounsfield units as predictor for cage subsidence and loss of reduction: following posterior-anterior stabilization in thoracolumbar spine fractures. Eur Spine J. 2018;27:3034–3042. DOI: 10.1007/s00586-018-5792-9
32. Brandão RACS, Martins WCDS, Arantes AA Jr, Gusmão SNS, Perrin G, Barrey C. Titanium versus polyetheretherketone implants for vertebral body replacement in the treatment of 77 thoracolumbar spinal fractures. Surg Neurol Int. 2017;8:191. DOI: 10.4103/sni.sni_113_17
33. Oberkircher L, Krüger A, Hörth D, Hack J, Ruchholtz S, Fleege C, Rauschmann M., Arabmotlagh M. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading – a biomechanical investigation. Spine J. 2018;18:525–531. DOI: 10.1016/j.spinee.2017.10.068
34. Mohammad-Shahi MH, Nikolaou VS, Giannitsios D, Ouellet J, Jarzem PF. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech. 2013;25:268–273. DOI: 10.1097/BSD.0b013e3182425eab
35. Stinchfield T, Vadapalli S, Pennington Z, Sivagnanam R, Prevost J, Schroeder G, Sciubba DM. Improvement in vertebral endplate engagement following anterior column reconstruction using a novel expandable cage with self-adjusting, multiaxial end cap. J Clin Neurosci. 2019;67:249–254. DOI: 10.1016/j.jocn.2019.06.017
36.
Review
For citations:
Lastevskiy A.D., Anikin K.A., Akhmetyanov Sh.A., Borisov N.N., Kuchuk L.E., Nazarov Zh.A., Rerikh V.V. Analysis of the causes of subsidence of modern expandable cages for vertebral body replacement in the surgical treatment of thoracolumbar spine injuries. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2025;22(4):6-18. (In Russ.) https://doi.org/10.14531/ss2025.4.6-18






























