Planning of transpedicular osteosynthesis with reposition and stabilization for thoracic and lumbar spine injuries
https://doi.org/10.14531/ss2025.4.19-29
Abstract
Objective. To evaluate the effectiveness of transpedicular reposition planning in patients with single-level injuries of the thoracic and lumbar vertebrae, depending on the target parameters.
Material and Methods. The study included two representative groups, retrospective and prospective, each of 80 patients with thoracic and lumbar fractures with an average age of 39.2 ± 2.2 years. In the prospective group, morphometry of the spine was performed using CT data, to plan the restoration of the vertical dimensions of the vertebral body and closed decompression of the contents of the spinal canal using a transpedicular repositioning system within up to a month from the moment of injury. Based on the results of morphometry, the main target parameters were calculated, which were aimed at being achieved during the operation.
Results. In the main group, the lumen deficit significantly decreased (from 39.5 ± 4.1% to 14.2 ± 3.1%) versus that in the control group (from 39.3 ± 4.6 to 22.1 ± 5.1%; p = 0.01), as well as the cross-sectional area of the spinal canal (from 37.4 ± 5.1% to 14.2 ± 3.1%) versus that in the control group (from 39.6±5.3% to 24.1 ± 5.5%; p = 0.01). The anterior vertebral body height was maximally restored, and the magnitude of bone fragment displacement into the spinal canal decreased (t < 0.05). A direct correlation was found between the size of the interbody spaces and the height of the vertebral body: between the anterior interbody space and the anterior height of the vertebral body in the main group – r = 0.485, in the control group – r = 0.594; and between the posterior interbody space and the posterior height of the vertebral body in the main group – r = 0.309, in the control group – r = 0.252. A strong correlation was obtained between the posterior height of the vertebral body and the spinal canal: r = 0.625 in the main group, r = 0.461 in the control group. The difference between the initial and calculated angle after surgery was 3.1° ± 0.5° in the main group and 5.6° ± 1.2° in the control group (p = 0.01).
Conclusion. Preoperative planning which includes the use of calculated target parameters such as interbody spaces and segmental angles during surgery, allows for the maximum restoration of the vertical dimensions of the injured vertebral body and the performance of closed decompression of the spinal canal contents.
About the Authors
V. S. KuftovRussian Federation
Vladimir Sergeyevich Kuftov, MD, PhD, neurosurgeon,
11 Kamozina str., Bryansk, 241035, Russia
V. D. Usikov
Russian Federation
Vladimir Dmitryevich Usikov, DMSc, Prof., senior researcher at the Department of Neurosurgery with Bone Oncology,
8 Baykova str., Saint Petersburg, 195427, Russia
References
1. Liao JC, Chen WP, Wang H. Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis. BMC Musculoskelet Disord. 2017;18:262. DOI: 10.1186/s12891-017-1623-0
2. Mulcahy MJ, Dower A, Tait M. Orthosis versus no orthosis for the treatment of thoracolumbar burst fractures: A systematic review. J Clin Neurosci. 2021;85:49–56. DOI: 10.1016/j.jocn.2020.11.044
3. Mishra S, Mishra PK, Verma VK, Issrani M, Prasad SS, Hodigere VC. Surgical decision-making in thoracolumbar fractures: a systematic review of anterior and posterior approach. J Orthop Case Rep. 2025;15:204–211. DOI: 10.13107/jocr.2025.v15.i05.5612
4. Wood KB, Li W, Lebl DR, Ploumis A. Management of thoracolumbar spine fractures. Spine J. 2014;14:145–164. DOI: 10.1016/j.spinee.2012.10.041
5. Azizi A, Azizzadeh A, Tavakoli Y, Vahed N, Mousavi T. Thoracolumbar fracture and spinal cord injury in blunt trauma: a systematic review, meta-analysis, and meta-regression. Neurosurg Rev. 2024;47:333. DOI: 10.1007/s10143-024-02553-3
6. Olivares OB, Carrasco MV, Pinto GI, Tonda FN, Riera Martínez JA, González AS. Preoperative and postoperative sagittal alignment and compensatory mechanisms in patients with posttraumatic thoracolumbar deformities who undergo corrective surgeries. Int J Spine Surg. 2021;15:585–590. DOI: 10.14444/8079
7. Tammam H, Alkot A, Ahmed AM, Said E. Long- versus short-segment fixation with an index vertebral screw for management of thoracolumbar fractures. Acta Orthop Belg. 2022;88:423–431. DOI: 10.52628/88.3.9657
8. Song Y, Pang X, Zhu F. Finite element analysis of the indirect reduction of posterior pedicle screw fixation for a thoracolumbar burst fracture. Medicine (Baltimore). 2022;101:e30965. DOI: 10.1097/MD.0000000000030965
9. Venier A, Roccatagliata L, Isalberti M, Scarone P, Kuhlen DE, Reinert M, Bonaldi G, Hirsch JA, Cianfoni A. Armed kyphoplasty: an indirect central canal decompression technique in burst fractures. AJNR Am J Neuroradiol. 2019;40:1965–1972. DOI: 10.3174/ajnr.A6285
10. Ullrich BW, Ottich M, Lawson McLean A, Mendel T, Hofmann GO, Schenk P. [Local spinal profile following operative treatment of thoracolumbar and lumbar fractures: Impact of reduction technique and bone quality]. Unfallchirurg. 2022;125:295–304. In German. DOI: 10.1007/s00113-021-01013-7
11. Рерих В.В., Борзых К.О. Посттравматические деформации грудного и поясничного отделов позвоночника у пациентов в позднем периоде позвоночно-спинномозговой травмы после ранее проведенных оперативных вмешательств. Международный журнал прикладных и фундаментальных исследований. 2015;(12-4):657–660. [Rerikh VV, Borzykh KO. Posttraumatic deformities of the thoracic and lumbar spine in patients with late period spinal cord injury after previous surgical interventions. International Journal of Applied and Fundamental Research. 2015;(12-4):657–660]. EDN: VBUMWX
12. Mayer M, Ortmaier R, Koller H, Koller J, Hitzl W, Auffarth A, Resch H, von Keudell A. Impact of sagittal balance on clinical outcomes in surgically treated T12 and L1 burst fractures: analysis of long-term outcomes after posterior-only and combined posteroanterior treatment. Biomed Res Int. 2017;2017:1568258. DOI: 10.1155/2017/1568258
13. Hey HWD, Lau ET, Tan KA, Lim JL, Choong D, Lau LL, Liu KG, Wong HK. Lumbar spine alignment in six common postures: An ROM analysis with implications for deformity correction. Spine (Phila Pa 1976). 2017;42:1447–1455. DOI: 10.1097/BRS.0000000000002131
14. Lafage R, Steinberger J, Pesenti S, Assi A, Elysee JC, Iyer S, Lenke LG, Schwab FJ, Kim HJ, Lafage V. Understanding thoracic spine morphology, shape, and proportionality. Spine (Phila Pa 1976). 2020;45:149–157. DOI: 10.1097/BRS.0000000000003227
15. Machino M, Morita D, Ando K, Kobayashi K, Nakashima H, Kanbara S, Ito S, Inoue T, Koshimizu H, Ito K, Kato F, Imagama S. Dynamic changes in longitudinal stretching of the spinal cord in thoracic spine: Focus on the spinal cord occupation rate of dural sac. Clin Neurol Neurosurg. 2020;198:106225. DOI: 10.1016/j.clineuro.2020.106225
16. Zappalá M, Lightbourne S, Heneghan NR. The relationship between thoracic kyphosis and age, and normative values across age groups: a systematic review of healthy adults. J Orthop Surg Res. 2021;16:447. DOI: 10.1186/s13018-021-02592-2
17. Афаунов А.А., Чайкин Н.С. Анализ технических вариантов декомпрессивно-стабилизирующих операций при повреждениях нижнегрудного и поясничного отделов позвоночника: систематический обзор литературы. Хирургия позвоночника. 2022;19(3):22–37. [Afaunov AA, Chaikin NS. Analysis of technical options for decompression and stabilization surgery for injuries of the lower thoracic and lumbar spine: a systematic review of the literature. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2022;19(3):22–37]. DOI: 10.14531/ss2022.3.22-37 EDN: NLVLNV
18. Дулаев А.К., Мануковский В.А., Кутянов Д.И. Позвоночно-спинномозговая травма. Под ред. проф. В.Е. Парфенова. Санкт-Петербург, 2018. [Dulaev AK, Manukovsky VA, Kutyanov DI. Spinal Cord Injury. Ed. by Prof. V.E. Parfyonov. Saint Petersburg, 2018]. DOI: 10.23682/120525 EDN: YTLNGI
19. Усиков В.Д., Куфтов В.С., Монашенко Д.Н., Долгушин А.А. Математические расчеты по моделированию поврежденного тела позвонка со смежными дисками и сагиттального угла на грудном и поясничном отделах. Российский нейрохирургический журнал им. А.Л. Поленова. 2022;14(4):98–110. [Usikov VD, Kuftov VS, Monashenko DN, Dolgushin AA. Mathematical calculations for modeling the damaged vertebral body with adjacent discs and the sagittal angle in the thoracic and lumbar regions. Russian Neurosurgical Journal named after Professor A.L. Polenov. 2022;14(4):98–110]. DOI: 10.56618/20712693_2022_14_4_98 EDN: GVFZZV
20. Куфтов В.С., Усиков В.Д. Программа для расчета восстановления исходной анатомии позвоночника: св-во о гос. регистрации программы для ЭВМ № 2023668665. 2023. Бюл. 9. [Kuftov VS, Usikov VD. Program for calculating the restoration of the original anatomy of the spine: Certificate of state registration of a computer program No. 2023668665. 2023. Bull. 9]. EDN: XHOEBA
21. Волков А.А., Белосельский Н.Н., Прибытков Ю.Н. Рентгеновская морфометрия межпозвонковых пространств позвоночного столба в норме и при дистрофических изменениях межпозвонковых дисков. Вестник рентгенологии и радиологии. 2015;(3):23–30. [Volkov AA, Belosel’skiy NN, Pribytkov YuN. Radiographic morphometry of intervertebral spaces of the vertebral column in health and dystrophic changes in the intervertebral disks. Journal of Radiology and Nuclear Medicine. 2015;(3):23–30]. DOI: 10.20862/0042-4676-2015-0-3-23-30 EDN: UCBDRV
22. Kaur K, Singh R, Prasath V, Magu S, Tanwar M. Computed tomographic-based morphometric study of thoracic spine and its relevance to anaesthetic and spinal surgical procedures. J Clin Orthop Trauma. 2016;7:101–108. DOI: 10.1016/j.jcot.2015.12.002
23. Ning L, Song LJ, Fan SW, Zhao X, Chen YL, Li ZZ, Hu ZA. Vertebral heights and ratios are not only race-specific, but also gender- and region-specific: establishment of reference values for mainland Chinese. Arch Osteoporos. 2017;12:88. DOI: 10.1007/s11657-017-0383-7
24. Hipp JA, Grieco TF, Newman P, Reitman CA. Definition of normal vertebral morphometry using NHANES-II radiographs. JBMR Plus. 2022;6:e10677. DOI: 10.1002/jbm4.10677
25. Koller H, Acosta F, Hempfing A, Rohrmüller D, Tauber M, Lederer S, Resch H, Zenner J, Klampfer H, Schwaiger R, Bogner R, Hitzl W. Long-term investigation of nonsurgical treatment for thoracolumbar and lumbar burst fractures: an outcome analysis in sight of spinopelvic balance. Eur Spine J. 2008;17:1073–1095. DOI: 10.1007/s00586-008-0700-3
26. Химич Ю.В., Томилов А.Б., Реутов А.И. Результаты хирургического лечения пациентов с оскольчатыми проникающими переломами тел нижних грудных и поясничных позвонков. Хирургия позвоночника. 2010;(1):13–17. [Khimitch YuV, Tomilov AB, Reutov AI. Outcomes of surgery in patients with comminuted penetrating fractures of lower thoracic and lumbar vertebrae. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2010;(1):13–17]. DOI: 10.14531/ss2010.1.13-17 EDN: LPAQKH
27. Афаунов А.А., Кузьменко А.В. Транспедикулярная фиксация при повреждениях грудного и поясничного отделов позвоночника, сопровождающихся травматическим стенозом позвоночного канала. Хирургия позвоночника. 2011;(4):8–17. [Afaunov AA, Kuzmenko AV. Transpedicular fixation for thoracic and lumbar spine injury with post-traumatic spinal stenosis. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2011;(4):8–17]. DOI: 10.14531/ss2011.4.8-17 EDN: ONTTIB
28. Hadgaonkar S, Shah K, Khurjekar K, Krishnan V, Shyam A, Sancheti P. A levering technique using small parallel rods for open reduction of high-grade thoracolumbar dislocation. Global Spine J. 2017;7:302–308. DOI: 10.1177/2192568217699184
29. Benek HB, Akcay E, Yilmaz H, Yurt A. Efficiency of distraction and ligamentotaxis in posterior spinal instrumentation of thoracolumbar retropulsed fractures. Turk Neurosurg. 2021;31:973–979. DOI: 10.5137/1019-5149.JTN.34860-21.3
30. Усиков В.Д. Руководство по транспедикулярному остеосинтезу позвоночника. Санкт-Петербург, 2006. [Usikov VD. Transpedicular Spine Osteosynthesis Guideline. Saint Petersburg, 2006]. EDN: QLOEJF
31. Huang J, Zhou L, Yan Z, Zhou Z, Gou X. Effect of manual reduction and indirect decompression on thoracolumbar burst fracture: a comparison study. J Orthop Surg Res. 2020;15:532. DOI: 10.1186/s13018-020-02075-w
32. Whang PG, Vaccaro AR. Thoracolumbar fracture: posterior instrumentation using distraction and ligamentotaxis reduction. J Am Acad Orthop Surg. 2007;15:695–701. DOI: 10.5435/00124635-200711000-00008
33. Wang XB, Lü GH, Li J, Wang B, Lu C, Phan K. Posterior distraction and instrumentation cannot always reduce displaced and rotated posterosuperior fracture fragments in thoracolumbar burst fracture. Clin Spine Surg. 2017;30:E317–E322. DOI: 10.1097/BSD.0000000000000192
34. Валеев Е.К., Валеев И.Е., Шульман И.А., Ахатов А.Ф. Диагностика состояния элементов средней остеолигаментарной колонны позвоночного столба при травме грудопоясничного отдела. Хирургия позвоночника. 2015;12(2):16–19. [Valeev EK, Valeev IE, Shulman IA, Akhatov AF. Diagnosis of the condition of osteoligament column elements in thoracolumbar spine injury. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2015;12(2):16–19]. DOI: 10.14531/ss2015.2.16-19 EDN: UAHIGX
35. Рерих В.В., Борзых К.О. Посттравматическое сужение позвоночного канала и его хирургическое ремоделирование при взрывных переломах грудных и поясничных позвонков. Хирургия позвоночника. 2011;(3):15–20. [Rerikh VV, Borzykh KO. Post-traumatic spinal canal narrowing and its surgical remodeling for thoracic and lumbar fractures. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2011;(3):15–20]. DOI: 10.14531/ss2011.3.15-20 EDN: OEFQRD
36. Луцик А.А., Бондаренко Г.Ю., Булгаков В.Н., Епифанцев А.Г. Передние декомпрессивно-стабилизирующие операции при осложненной травме грудного и грудопоясничного отделов. Хирургия позвоночника. 2012;(3):8–16. [Lutsik AA, Bondarenko GYu, Bulgakov VN, Yepifantsev AG. Anterior decompressive and stabilizing surgery for complicated thoracic and thoracolumbar spinal injuries. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2012;(3):8–16]. DOI: 10.14531/ss2012.3.8-16 EDN: PCCSZH
37. Rezvani M, Asadi J, Sourani A, Foroughi M, Tehrani DS. In-fracture pedicular screw placement during ligamentotaxis following traumatic spine injuries, a randomized clinical trial on outcomes. Korean J Neurotrauma. 2023;19:90–102. DOI: 10.13004/kjnt.2023.19.e9
38. Dobran M, Nasi D, Brunozzi D, di Somma L, Gladi M, Iacoangeli M, Scerrati M. Treatment of unstable thoracolumbar junction fractures: short-segment pedicle fixation with inclusion of the fracture level versus long-segment instrumentation. Acta Neurochir (Wien). 2016;158:1883–1889. DOI: 10.1007/s00701-016-2907-0
39. Kapoen C, Liu Y, Bloemers FW, Deunk J. Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with intermediate screws at the fracture level - a systematic review and meta-analysis. Eur Spine J. 2020;29:2491–2504. DOI: 10.1007/s00586-020-06479-4
40. Gómez-Vega JC, Vergara Lago MF. Open reduction of thoraco-lumbar fractures and sagital balance correction using Schanz screws. Rev Esp Cir Ortop Traumatol (Engl Ed). 2021;65:229–236. In English, Spanish. DOI: 10.1016/j.recot.2020.07.009
41. Zhang G, Li P, Qi C, Wang P, Wang J, Duan Y. [The effect of the sequence of intermediate instrumentation and distraction-reduction of the fractured vertebrae on the surgical treatment of mild to moderate thoracolumbar burst fractures]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022;36:600–608. In Chinese. DOI: 10.7507/1002-1892.202112047
42. Kose KC, Inanmaz ME, Isik C, Basar H, Caliskan I, Bal E. Short segment pedicle screw instrumentation with an index level screw and cantilevered hyperlordotic reduction in the treatment of type-A fractures of the thoracolumbar spine. Bone Joint J. 2014;96-B:541–547. DOI: 10.1302/0301-620X.96B4.33249
43. Леонова О.Н., Байков Е.С., Пелеганчук А.В., Крутько А.В. Плотность костной ткани позвонков в единицах Хаунсфилда как предиктор несостоятельности межтелового блока и проседания имплантата при круговом поясничном спондилодезе. Хирургия позвоночника. 2022;19(3):57–65. [Leonova ON, Baikov ES, Peleganchuk AV, Krutko AV. Vertebral bone density in Hounsfield units as a predictor of interbody non-union and implant subsidence in lumbar circumferential fusion. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2022;19(3):57–65]. DOI: 10.14531/ss2022.3.57-65 EDN: GZQCAY
44. Рерих В.В., Садовой М.А., Рахматиллаев Ш.Н. Остеопластика в системе лечения переломов тел грудных и поясничных позвонков. Хирургия позвоночника. 2009;(2):25–34. [Rerikh VV, Sadovoy MA, Rakhmatillaev ShN. Application of osteoplasty for complex treatmrnt of the thoracic and lumbar vertebrae fractures. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2009;(2):25–34]. DOI: 10.14531/ss2009.2.25-34 EDN: KTYEYD
45. Аганесов А.Г. Хирургическое лечение осложненной травмы позвоночника – прошлое и настоящее. Хирургия. Журнал им. Н.И. Пирогова. 2013;(1):5–12. [Aganesov AG. The future and the past of surgery for the complicated spine trauma. Pirogov Russian Journal of Surgery. 2013;(1):5–12]. EDN: PWYZIP
46. Афаунов А.А., Кузьменко А.В., Басанкин И.В. Дифференцированный подход к лечению пациентов с переломами тел нижнегрудных и поясничных позвонков с травматическими стенозами позвоночного канала. Хирургия позвоночника. 2016;13(2):8–17. [Afaunov AA, Kuzmenko AV, Basankin IV. Differentiated approach to the treatment of patients with fractures of lower thoracic and lumbar vertebral bodies and traumatic spinal stenosis. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2016;13(2):8–17]. DOI: 10.14531/ss2016.2.8-17 EDN: VXVRQB
47. Богомолова Н.В., Шульга А.Е., Зарецков В.В., Смолькин А.А., Норкин И.А. Особенности репаративного остеогенеза поврежденных тел грудных и поясничных позвонков в различные сроки после травмы. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2016;23(4):44–49. [Bogomolova NV, Shul’ga AE, Zaretskov VV, Smol’kin AA, Norkin .A. Peculiarities of reparative osteogenesis of injured thoracic and lumbar vertebral bodies at different terms after trauma. N.N. Priorov Journal of Traumatology and Orthopedics. 2016;23(4):44–49]. DOI: 10.17816/vto201623444-49 EDN: YGKMWZ
48. Усиков В.Д., Куфтов В.С., Монашенко Д.Н. Ретроспективный анализ восстановления анатомии поврежденного позвоночно-двигательного сегмента в грудном и поясничном отделах транспедикулярным репозиционным устройством. Хирургия позвоночника. 2022;19(3):38–48. [Usikov VD, Kuftov VS, Monashenko DN. Retrospective analysis of restoration of the anatomy of the damaged thoracic and lumbar spinal motion segment using transpedicular repositioning device. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2022;19(3):38–48]. DOI: 10.14531/ss2022.3.38-48 EDN: PRTYGK
Review
For citations:
Kuftov V.S., Usikov V.D. Planning of transpedicular osteosynthesis with reposition and stabilization for thoracic and lumbar spine injuries. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2025;22(4):19-29. (In Russ.) https://doi.org/10.14531/ss2025.4.19-29






























