The role of expandable cages for vertebral body replacement in surgical treatment of patients with thoracic and lumbar spine injuries: a systematic review
https://doi.org/10.14531/ss2025.4.30-41
Abstract
Objective. To perform a systematic analysis of contemporary scientific data characterizing the clinical effectiveness of expandable implants for vertebral body replacement in the complex surgical treatment of patients with thoracic and lumbar spine injuries.
Material and Methods. The search for scientific sources was carried out in accordance with the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions and the PRISMA principles in the Cochrane Library, PubMed and Medline databases for the period 2015–2025 A total of 19 studies on the radiological and functional outcomes of the surgeries involving implantation of expandable spinal cages for thoracic and lumbar spine injuries were analyzed.
Results. The technologies for spinal surgery have been developing rapidly over the recent decades. The improvements in minimally invasive techniques have required modifications to implants including those for anterior support spinal fusion. The implants of transformable geometry which allow the replacement of spinal defects that significantly exceed their original dimensions are of particular interest. The contemporary expandable spinal cages vary in the material they are made from and their transformation mechanisms. The literature describes successful cases of their use in thoracic and lumbar spine injuries. The authors demonstrate favorable surgical outcomes using combinations of screw-assisted fusion and interbody implants.
Conclusion. Expandable spinal cages feature a wide range of applications in the treatment of spinal injuries. The advent of vertical lift mechanisms in intervertebral implants has led to a trend towards modifying surgical techniques, particularly the sequence of intervention stages. Despite differences in approaches, specialists favor minimally invasive implant placement, with radiographic and functional results showing no significant differences.
About the Authors
S. D. ShuvalovRussian Federation
Stanislav Dmitrievich Shuvalov, MD, neurosurgeon, junior researcher, Department of Innovative Projects for Neurosurgery and Vertebrology, Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery,
148 Chernyshevskogo str., Saratov, 410002, Russia,
A. E. Shulga
Russian Federation
Aleksey Evgenyevich Shulga, MD, PhD, neurosurgeon, senior researcher, Department of Innovative Projects for Neurosurgery and Vertebrology, Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery,
148 Chernyshevskogo str., Saratov, 410002, Russia
S. P. Bazhanov
Russian Federation
Sergey Petrovich Bazhanov, DMSc, neurosurgeon, Head of the Department of Innovative Projects for Neurosurgery and Vertebrology, Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery,
148 Chernyshevskogo str., Saratov, 410002, Russia
V. V. Ostrovskij
Russian Federation
Vladimir Vladimirovich Ostrovskij, DMSc, neurosurgeon, director of the Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery,
148 Chernyshevskogo str., Saratov, 410002, Russia
V. S. Tolkachev
Russian Federation
Vladimir Sergeyevich Tolkachev, MD, neurosurgeon, junior researcher, Department of Innovative Projects for Neurosurgery and Vertebrology, Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery,
148 Chernyshevskogo str., Saratov, 410002, Russia
References
1. O’Toole JE, Kaiser MG, Anderson PA, Arnold PM, Chi JH, Dailey AT, Dhall SS, Eichholz KM, Harrop JS, Hoh DJ, Qureshi S, Rabb CH, Raksin PB. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the evaluation and treatment of patients with thoracolumbar spine trauma: executive summary. Neurosurgery. 2019;84:2–6. DOI: 10.1093/neuros/nyy394
2. Gonschorek O, Hauck S, Weiß T, Bühren V. [Fractures of the thoracic and lumbar spine]. Chirurg. 2015;86:901–914; quiz 915-6. In German. DOI: 10.1007/s00104-015-0045-5
3. Мазуренко А.Н., Матюшова Т.А. Вентральный спондилодез в хирургическом лечении оскольчатых переломов грудного и поясничного отделов позвоночника. Медицинские новости. 2022;(6):39–43. [Mazurenka AN, Matsiushova TA. Ventral stabilization and fusion in the surgical treatment of the thoraco-lumbar spine fractures. Meditsinskie novosti. 2022;(6):39–43]. EDN: MOFAWK
4. Усиков В.Д., Воронцов К.Е., Куфтов В.С., Ершов Н.И. Ближайшие и отдаленные результаты хирургического лечения позвоночно-спинномозговой травмы грудного и поясничного отделов. Травматология и ортопедия России. 2014;(2(72)):37–44. [Usikov VD, Vorontsov KE, Kuftov VS, Ershov NI. Early and long-term results of surgical treatment of the thoracic and lumbar vertebral and spinal trauma. Traumatology and Orthopedics of Russia. 2014;(2(72)):37–44]. EDN: SIWBOV
5. Tarhan T, Froemel D, Rickert M, Rauschmann M, Fleege C. [History of vertebral body replacement]. Unfallchirurg. 2015;118 Suppl 1:73–79. In German. DOI: 10.1007/s00113-015-0084-x
6. Graillon T, Farah K, Rakotozanany P, Blondel B, Adetchessi T, Dufour H, Fuentes S. Anterior approach with expandable cage implantation in management of unstable thoracolumbar fractures: Results of a series of 93 patients. Neurochirurgie. 2016;62:78–85. DOI: 10.1016/j.neuchi.2016.01.001
7. Lau D, Song Y, Guan Z, La Marca F, Park P. Radiological outcomes of static vs expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence. Neurosurgery. 2013;72:529–539; discussion 528–529. DOI: 10.1227/NEU.0b013e318282a558
8. Вишневский А.А., Казбанов В.В., Баталов М.С. Титановые имплантаты в вертебрологии: перспективные направления. Хирургия позвоночника. 2015;12(4):49–55. [Vishnevsky AA, Kazbanov VV, Batalov MS. Titanium implants in spine surgery: promising directions. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2015;12(4):49–55]. DOI: 10.14531/ss2015.4.49-55 EDN: VGMHVR
9. Klezl Z, Bagley CA, Bookland MJ, Wolinsky JP, Rezek Z, Gokaslan ZL. Harms titanium mesh cage fracture. Eur Spine J. 2007;16 Suppl 3:306–310. DOI: 10.1007/s00586-007-0377-z
10. Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model: fatigue characteristics. Clin Spine Surg. 2016;29:387–393. DOI: 10.1097/BSD.0b013e31826eb0f7
11. Lee JH, Oh HS, Choi JG. Comparison of the posterior vertebral column resection with the expandable cage versus the nonexpandable cage in thoracolumbar angular kyphosis. Clin Spine Surg. 2017;30:E398–E406. DOI: 10.1097/BSD.0000000000000236
12. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142. DOI: 0.1002/14651858.ED000142
13. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. DOI: 10.1371/journal.pmed.1000097
14. Kreinest M, Schmahl D, Grützner PA, Matschke S. Radiological results and clinical patient outcome after implantation of a hydraulic expandable vertebral body replacement following traumatic vertebral fractures in the thoracic and lumbar spine: a 3-year follow-up. Spine (Phila Pa 1976). 2017;42:E482–E489. DOI: 10.1097/BRS.0000000000001862
15. Pham MH, Tuchman A, Chen TC, Acosta FL, Hsieh PC, Liu JC. Transpedicular corpectomy and cage placement in the treatment of traumatic lumbar burst fractures. Clin Spine Surg. 2017;30:360–366. DOI: 10.1097/BSD.0000000000000312
16. De la Cruz-Álvarez S, Canales-Nájera JA, Hurtado-Padilla A, Guevara-Villazón F, Ledezma-Ledezma J. Posterior corpectomy, transpedicular fixation and expandable cage placement in thoracolumbar fractures. Acta Ortop Mex. 2017;31:82–85. In Spanish
17. Lang S, Neumann C, Schwaiger C, Voss A, Alt V, Loibl M, Kerschbaum M. Radiological and mid- to long-term patient-reported outcome after stabilization of traumatic thoraco-lumbar spinal fractures using an expandable vertebral body replacement implant. BMC Musculoskelet Disord. 2021;22:744. DOI: 10.1186/s12891-021-04585-y
18. Lindtner RA, Mueller M, Schmid R, Spicher A, Zegg M, Kammerlander C, Krappinger D. Monosegmental anterior column reconstruction using an expandable vertebral body replacement device in combined posterior-anterior stabilization of thoracolumbar burst fractures. Arch Orthop Trauma Surg. 2018;138:939–951. DOI: 10.1007/s00402-018-2926-9
19. Segi N, Nakashima H, Kanemura T, Satake K, Ito K, Tsushima M, Tanaka S, Ando K, Machino M, Ito S, Yamaguchi H, Koshimizu H, Tomita H, Ouchida J, Morita Y, Imagama S. Comparison of outcomes between minimally invasive lateral approach vertebral reconstruction using a rectangular footplate cage and conventional procedure using a cylindrical footplate cage for osteoporotic vertebral fracture. J Clin Med. 2021;10:5664. DOI: 10.3390/jcm10235664
20. Pesenti S, Graillon T, Mansouri N, Rakotozanani P, Blondel B, Fuentes S. Minimal invasive circumferential management of thoracolumbar spine fractures. Biomed Res Int. 2015;2015:639542. DOI: 10.1155/2015/639542
21. Smits AJ, Noor A, Bakker FC, Deunk J, Bloemers FW. Thoracoscopic anterior stabilization for thoracolumbar fractures in patients without spinal cord injury: quality of life and long-term results. Eur Spine J. 2018;27:1593–1603. DOI: 10.1007/s00586-018-5571-7
22. Smits AJ, Deunk J, Bakker FC, Bloemers FW. Thoracoscopic correction of post-traumatic kyphosis with an expandable cage: radiologic and patient-reported outcomes. Asian Spine J. 2020;14:157–168. DOI: 10.31616/asj.2019.0062
23. Urbanski W, Zaluski R. Minimally invasive transpedicular posterolateral approach (MITPA) corpectomy in the treatment of traumatic or metastatic vertebral collapse with kyphosis. Global Spine J. 2025;15:3612–3618. DOI: 10.1177/21925682251325167
24. Felton J, John AA, Daneshfar SC, Cox CT, Grochmal J. Novel nerve-sparing in situ assembly of an expandable titanium cage to maximize endplate coverage after posterior corpectomy for comminuted lumbar burst fractures. Oper Neurosurg. 2023;25:386–393. DOI: 10.1227/ons.0000000000000827
25. Kreinest M, Schmahl D, Grützner PA, Matschke S. Trisegmental fusion by vertebral body replacement: Outcome following traumatic multisegmental fractures of the thoracic and lumbar spine. Unfallchirurg. 2018;121:300–305. In German. DOI: 10.1007/s00113-017-0335-0
26. Cappelletto B, Giorgiutti F, Balsano M. Evaluation of the effectiveness of expandable cages for reconstruction of the anterior column of the spine. J Orthop Surg (Hong Kong). 2020;28:2309499019900472. DOI: 10.1177/2309499019900472
27. Richardson B, Paulzak A, Rusyniak WG, Martino A. Anterior lumbar corpectomy with expandable titanium cage reconstruction: a case series of 42 patients. World Neurosurg. 2017;108:317–324. DOI: 10.1016/j.wneu.2017.08.179
28. Grobost P, Boudissa M, Kerschbaumer G, Ruatti S, Tonetti J. Early versus delayed corpectomy in thoracic and lumbar spine trauma. A long-term clinical and radiological retrospective study. Orthop Traumatol Surg Res. 2020;106:261–267. DOI: 10.1016/j.otsr.2018.11.019
29. Deml MC, Mazuret Sepulveda CA, Albers CE, Hoppe S, Bigdon SF, Häckel S, Milavec H, Benneker LM. Anterior column reconstruction of the thoracolumbar spine with a new modular PEEK vertebral body replacement device: retrospective clinical and radiologic cohort analysis of 48 cases with 1.7-years follow-up. Eur Spine J. 2020;29:3194–3202. DOI: 10.1007/s00586-020-06464-x
30. Ortiz Torres MJ, Ravipati K, Smith CJ, Norby K, Pleitez J, Galicich W, Berg-man T, Roark C, Siddiq F. Outcomes for standalone anterolateral corpectomy for thoracolumbar burst fractures. Neurosurg Rev. 2024;47:816. DOI: 10.1007/s10143-024-03049-w
Review
For citations:
Shuvalov S.D., Shulga A.E., Bazhanov S.P., Ostrovskij V.V., Tolkachev V.S. The role of expandable cages for vertebral body replacement in surgical treatment of patients with thoracic and lumbar spine injuries: a systematic review. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2025;22(4):30-41. (In Russ.) https://doi.org/10.14531/ss2025.4.30-41






























