Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

GENETIC MARKERS OF IDIOPATHIC AND CONGENITAL SCOLIOSIS, AND DIAGNOSIS OF SUSCEPTIBILITY TO THE DISEASE: REVIEW OF THE LITERATURE

https://doi.org/10.14531/ss2015.1.27-35

Abstract

Inheritance of scoliosis has been studied for many decades, and it was found that it is usually complex, although the literature describes the families with a clear Mendelian principle of transmission of this disease through generations. Naturally, it was necessary to try to find the genetic basis of the disease, that is, genes whose mutations can cause the development of scoliosis. And such mutations may serve as markers of the disease assisting in its diagnosis before the onset of spinal deformities. In cases of hereditary disorders of the spine, deformities often continue to evolve even after surgery. In all cases it is important to know what causes led to the development of scoliosis, and such information is certainly important in assessment of the risk of developing disease in a patient, because it allows predicting the effects of a particular mutation, as well as choosing a strategy and tactics of the treatment.

About the Authors

Sergey Borisovich Kuznetsov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Mikhail Vitalyevich Mikhaylovsky
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Mikhail Anatolyevich Sadovoy
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Anastasiya Viktorovna Korel
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation


Ekaterina Vladimirovna Mamonova
Innovation Medical Techology Center, Novosibirsk, Russia
Russian Federation


References

1. Михайловский М.В., Фомичев Н.Г. Хирургия деформаций позвоночника. Новосибирск, 2011.

2. Aulisa L, Papaleo P, Pola E, et al. Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine. 2007; 32: 2700-2702.

3. Bae JW, Cho CH, Min WK, et al. Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep. 2012; 39: 5561-5567. doi: 10.1007/s11033-011-1360-7.

4. Carr AJ, Ogilvie DJ, Wordsworth BP, et al. Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin Orthop Relat Res. 1992; (274): 305-310.

5. Chen Q, Zhang Y, Johnson DM, et al. Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell. 1999; 10: 2149-2162.

6. Chen Z, Tang NL, Cao X, et al. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet. 2009; 17: 525-532. doi: 10.1038/ejhg.2008.203

7. Chen ZJ, Qiu Y, Yu Y, et al. [Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosis]. Zhonghua Wai Ke Za Zhi. 2009; 47: 1332-1335.

8. Davies BR, Duran M. Malformations of the cranium, vertebral column, and related central nervous system: morphologic heterogeneity may indicate biological diversity. Birth Defects Res A Clin Mol Teratol. 2003; 67: 563-571.

9. Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am. 1973; 55: 974-982.

10. Emery AE, Rimoin DL, eds. Principles and Practice of Molecular Genetics. NY: Churchill Livingstone, 1990.

11. Esposito T, Uccello R, Caliendo R, et al. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: a possible genetic linkage. J Steroid Biochem Mol Biol. 2009; 116: 56-60. doi: 10.1016/j.jsbmb.2009.04.010.

12. Eun IS, Park WW, Suh KT, et al. Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009; 18: 1936-1940. doi: 10.1007/s00586-009-1145-z.

13. Gao W, Peng Y, Liang G, et al. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS One. 2013; 8: e53234. doi: 10.1371/journal.pone.0053234.

14. Gorman KF, Julien C, Moreau A. The genetic epidemiology of idiopathic scoliosis. Eur Spine J. 2012; 21: 1905-1919. doi: 10.1007/s00586-012-2389-6.

15. Grauers A, Rahman I, Gerdhem P. Heritability of scoliosis. Eur Spine J. 2012; 21: 1069-1074. doi: 10.1007/s00586-011-2074-1.

16. Inoue M, Minami S, Nakata Y, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine. 2002; 27: 2357-2362.

17. Inoue M, Minami S, Nakata Y, et al. Prediction of curve progression in idiopathic scoliosis from gene polymorphic analysis. Stud Health Technol Inform. 2002; 91: 90-96.

18. Janusz P, Kotwicki T, Andrusiewicz M, et al. XbaI and PvuII polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis: no association with occurrence or clinical form. PLoS One. 2013; 8: e76806. doi: 10.1371/journal.pone.0076806.

19. Jiang H, Qiu X, Dai J, et al. Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur Spine J. 2013; 22: 282-286. doi: 10.1007/s00586-012-2532-4.

20. Jiang J, Qian B, Mao S, et al. A promoter polymorphism of tissue inhibitor of metalloproteinase-2 (timp-2) gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine. 2011; 37: 41-47. doi: 10.1097/BRS.0b013e31820e71e3.

21. Kou I, Takahashi Y, Johnson TA, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013; 45: 676-679. doi: 10.1038/ng.263.

22. Lee JS, Suh KT, Eun IS. Polymorphism in interleukin-6 gene is associated with bone mineral density in patients with adolescent idiopathic scoliosis. J Bone Joint Surg Br. 2010; 92: 1118-1122. doi: 10.1302/0301-620X.92B8.23676.

23. Liu Z, Tang NL, Cao XB, et al. Lack of association between the promoter polymorphisms of MMP-3 and IL-6 genes and adolescent idiopathic scoliosis: a case-control study in a Chinese Han population. Spine. 2010; 35: 1701-1705. doi: 10.1097/BRS.0b013e3181c6ba13.

24. Mao S, Xu L, Zhu Z, et al. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis. Spine. 2013; 38: 1034-1039. doi: 10.1097/BRS.0b013e318287fcfd.

25. Marosy B, Justice CM, Nzegwu N, et al. Lack of association between the aggrecan gene and familial idiopathic scoliosis. Spine. 2006; 31: 1420-1425.

26. McGregor TL, Gurnett CA, Dobbs MB, et al. Common polymorphisms in human lysyl oxidase genes are not associated with the adolescent idiopathic scoliosis phenotype. BMC Med Genet. 2011; 12: 92. doi: 10.1186/1471-2350-12-92.

27. Miller NH, Justice CM, Marosy B, et al. Identification of candidate regions for familial idiopathic scoliosis. Spine. 2005; 30: 1181-1187.

28. Miller NH, Marosy B, Justice CM, et al. Linkage analysis of genetic loci for kyphoscoliosis on chromosomes 5p13, 13q13.3, and 13q32. Am J Med Genet A. 2006; 140: 1059-1068.

29. Miller NH, Mims B, Child A, et al. Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J Orthop Res. 1996; 14: 994-999.

30. Moґrocz M, Czibula A, Groґzer ZB, et al. Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine. 2011; 36: E123-E130. doi: 10.1097/BRS.0b013e318a511b0e.

31. Montanaro L, Parisini P, Greggi T, et al. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis. 2006; 1: 21.

32. Moon ES, Kim HS, Sharma V, et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J. 2013; 54: 500-509. doi: 10.3349/ymj.2013.54.2.500.

33. Morcuende JA, Minhas R, Dolan L, et al. Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine. 2003; 28: 2025-2028.

34. Nelson LM, Ward K, Ogilvie JW. Genetic variants in melatonin synthesis and signaling pathway are not associated with adolescent idiopathic scoliosis. Spine. 2011; 36: 37-40. doi: 10.1097/BRS.0b013e3181e8755b.

35. Nowak R, Szota J, Mazurek U. Vitamin D Receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of juvenile and adolescent idiopathic scoliosis patients. BMC Musculoskelet Disord. 2012; 13: 259. doi: 10.1186/1471-2474-13-259.

36. Ogilvie JW, Braun J, Argyle V, et al. The search for idiopathic scoliosis genes. Spine. 2006; 31: 679-681.

37. Peng Y, Liang G, Pei Y, et al. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop. 2012; 36: 671-677. doi: 10.1007/s00264-011-1374-8.

38. Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011; 145: 650-663. doi: 10.1016/j.cell.2011.05.011.

39. Qiu XS, Tang NL, Yeung HY, et al. Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine. 2008; 33: 2204-2207. doi: 10.1097/BRS.0b013e31817e0424.

40. Qiu XS, Tang NL, Yeung HY, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007; 32: 1748-1753.

41. Qiu XS, Tang NL, Yeung HY, et al. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007; 462: 53-58.

42. Qiu XS, Tang NL, Yeung HY, et al. The role of melatonin receptor 1B gene (MTNR1B) in adolescent idiopathic scoliosis - a genetic association study. Stud Health Technol Inform. 2006; 123: 3-8.

43. Qiu Y, Mao SH, Qian BP, et al. A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine. 2012; 37: 127-133. doi: 10.1097/BRS.0b013e31823e5890.

44. Roye BD, Wright ML, Williams BA, et al. Does ScoliScore provide more information than traditional clinical estimates of curve progression? Spine. 2012; 37: 2099-2103. doi: 10.1097/BRS.0b013e31825eb605.

45. Ryzhkov II, Borzilov EE, Churnosov MI, et al. Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine. 2013; 38: E699-E704. doi: 10.1097/BRS.0b013e31828de9e1.

46. Shyy W, Wang K, Gurnett CA, et al. Evaluation of GPR50, hMel-1B, and ROR-alpha melatonin-related receptors and the etiology of adolescent idiopathic scoliosis. J Pediatr Orthop. 2010; 30: 539-543. doi: 10.1097/BPO.0b013e3181e7902c.

47. Suh KT, Eun IS, Lee JS. Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2010; 19: 1545-1550. doi: 10.1007/s00586-010-1385-y.

48. Takahashi Y, Matsumoto M, Karasugi T, et al. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res. 2011; 29: 1055-1058. doi: 10.1002/jor.21347.

49. Takahashi Y, Matsumoto M, Karasugi T, et al. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res. 2011; 29: 834-837. doi: 10.1002/jor.21322.

50. Tang NL, Yeung HY, Lee KM, et al. A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine. 2006; 31: 2463-2468.

51. Wang H, Wu Z, Zhuang Q, et al. Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine. 2008; 33: 2199-2203. doi: 10.1097/BRS.0b013e31817c03f9.

52. Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis. Lancet. 2008; 371: 1527-1537. doi: 10.1016/S0140-6736(08)60658-3.

53. Wu J, Qiu Y, Zhang L, et al. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2006; 31: 1131-1136.

54. Wynne-Davies R. Genetic aspects of idiopathic scoliosis. Dev Med Child Neurol. 1973; 15: 809-811.

55. Wynne-Davies R. Familial (idiopathic) scoliosis. A family survey. J Bone Joint Surg Br. 1968; 50: 24-30.

56. Xu L, Qiu X, Sun X, et al. Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J. 2011; 20: 1757-1764. doi: 10.1007/s00586-011-1874-7.

57. Yang Y, Wu Z, Zhao T, et al. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics. 2009; 32: 411. doi: 10.3928/01477447-20090511-08.

58. Yeung HY, Tang NL, Lee KM, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006; 123: 18-24.

59. Zhang HQ, Lu SJ, Tang MX, et al. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2009; 34: 760-764. doi: 10.1097/BRS.0b013e31818ad5ac.

60. Zhao D, Qiu GX, Wang YP, et al. Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-a gene. Orthop Surg. 2009; 1: 222-230. doi: 10.1111/j.1757-7861.2009.00038.x.

61. Zhou S, Qiu XS, Zhu ZZ, et al. A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord. 2012; 13: 181. doi: 10.1186/1471-2474-13-181.

62. Zhuang QY, Wu ZH, Qiu GX. [Is polymorphism of CALM1 gene or growth hormone receptor gene associated with susceptibility to adolescent idiopathic scoliosis?] Zhonghua Yi Xue Za Zhi. 2007; 87: 2198-2202. In Chinese.

63. Zorkol’tseva IV, Liubinskii OA, Sharipov RN, et al. [Analysis of polymorphism of the number of tandem repeats in the aggrecan gene exon G3 in the families with idiopathic scoliosis]. Genetika. 2002; 38: 259-263. In Russian.


Review

For citations:


Kuznetsov S.B., Mikhaylovsky M.V., Sadovoy M.A., Korel A.V., Mamonova E.V. GENETIC MARKERS OF IDIOPATHIC AND CONGENITAL SCOLIOSIS, AND DIAGNOSIS OF SUSCEPTIBILITY TO THE DISEASE: REVIEW OF THE LITERATURE. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2015;12(1):27-35. https://doi.org/10.14531/ss2015.1.27-35



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)