POSTERIOR SCREW FIXATION OF THE CRANIOCERVICAL JUNCTION
https://doi.org/10.14531/ss2014.2.42-48
Abstract
Objective. To analyze feasibility of posterior instrumented fixation of the craniocervical spine, and to describe technical aspects of screw insertion and instrumentation configuration depending on individual anatomical features and clinical settings.
Material and Methods. The paper presents the experience of surgical treatment of 29 patients who underwent different types of posterior screw fixation in the craniocervical spine from the occipital bone to the C2 vertebra. Technical aspects of screw insertion at different levels, possible complications and ways of their elimination and prevention were described.
Results. The follow-up period of patients varied from 6 months to 3 years. Good functional outcome was observed in all cases. There were no episodes of instability. The expected clinical picture included limited range of rotational motion, which became possible for the account of not fixed segments.
Conclusion. Posterior instrumented fixation using polyaxial screws and rods is a reliable stabilization method for various disorders of the occipitoatlantoaxial junction. Its use requires careful preoperative planning and knowledge of all technical aspects of screw insertion and possible complications.
About the Authors
Aleksandr Vadimovich GubinRussian Federation
Aleksandr Vladimirovich Burtsev
Russian Federation
References
1. Benke MT, O’Brien JR, Turner AW, et al. Biomechanical comparison of transpedicular versus intralaminar C2 fixation in C2-C6 subaxial constructs. Spine. 2010;36:E33-E37. doi: 10.1097/BRS.0b013e3181eea6e2.
2. Bransford RJ, Freeborn MA, Russo AJ, et al. Accuracy and complications associated with posterior C1 screw fixation techniques: a radiographic and clinical assessment. Spine J. 2012; 12: 231-238. doi: 10.1016/j.spinee.2012.02.011.
3. Bransford RJ, Russo AJ, Freeborn M, et al. Posterior C2 instrumentation: accuracy and complications associated with four techniques. Spine. 2011; 36: E936-E943. doi: 10.1097/BRS.0b013e3181fdaf06.
4. Chang-Wei L, Wei L, Zhen-Sheng M, et al. Posterior rotating rod reduction strategy for irreducible atlantoaxial subluxations with congenital odontoid aplasia. Spine. 2010; 35: 2064-2070. doi: 10.1097/BRS.0b013e3181ce1758.
5. Claybrooks R, Kavania M, Milks R, et al. Atlantoaxial fusion: a biomechanical analysis of two C1-C2 fusion techniques. Spine J. 2007; 7: 682-688.
6. Conroy E, Laing A, Kenneally R, et al. C1 lateral mass screw-induced occipital neuralgia: a report of two cases. Eur Spine J. 2010; 19: 474-476. doi: 10.1007/s00586-009-1178-3.
7. Cristante AF, Torelli AG, Kohlmann RB, et al. Feasibility of intralaminar, lateral mass, or pedicle axis vertebra screws in children under 10 years of age: a tomographic study. Neurosurgery. 2012; 70: 835-839. doi: 10.1227/NEU.0b013e3182367417.
8. Deutsch H, Haid RW, Rodts GE Jr, et al. Occipitocervical fixation: long-term results. Spine. 2005; 30: 530-535.
9. Dorward IG, Wright NM. Seven years of experience with C2 translaminar screw fixation: clinical series and review of the literature. Neurosurgery. 2011; 68: 1491-1499. doi: 10.1227/NEU.0b013e318212a4d7.
10. Estillore RP, Buchowski JM, Minh do V, et al. Risk of internal carotid artery injury during C1 screw placement: analysis of 160 computed tomography angiograms. Spine J. 2011; 11: 316-323. doi: 10.1016/j.spinee.2011.03.009.
11. Ferri-de-Barros F, Little DG, Bridge C, et al. Atlantoaxial and craniocervical arthrodesis in children: a tomographic study comparing suitability of C2 pedicles and C2 laminae for screw fixation. Spine. 2010; 35: 291-293. doi: 10.1097/BRS.0b013e3181afea7d.
12. Finn MA, Bishop FS, Dailey AT. Surgical treatment of occipitocervical instability. Neurosurgery. 2008; 63: 961-969. doi: 10.1227/01.NEU.0000312706.47944.35.
13. Gabriel JP, Muzumdar AM, Khalil S, et al. A novel crossed rod configuration incorporating translaminar screws for occipitocervical internal fixation: an in vitro biomechanical study. Spine J. 2011; 11: 30-35. doi: 10.1016/j.spinee.2010.09.013.
14. Gebauer M, Barvencik F, Briem D, et al. Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch. Eur Spine J. 2010; 19: 85-90. doi: 10.1007/s00586-009-1181-8.
15. Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw metod: a report of 160 treated patients. Neurosurgery. 2002; 51: 1351-1357.
16. Gorek J, Acaroglu E, Berven S, et al. Constructs incorporating intralaminar C2 screws provide rigid stability for atlantoaxial fixation. Spine. 2005; 30: 1513-1518.
17. Gunnarsson T, Massicotte EM, Govender PV, et al. The use of C1 lateral mass screws in complex cCervical spine surgery: indications, techniques, and outcome in a prospective consecutive series of 25 cases. J Spinal Disord Tech. 2007; 20: 308-316.
18. Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine. 2001; 26: 2467-2471.
19. Helgeson MD, Lehman RA Jr, Sasso RC, et al. Biomechanical analysis of occipitocervical stability afforded by three fixation techniques. Spine J. 2011; 11: 245-250. doi: 10.1016/j.spinee.2011.01.021.
20. Hong JT, Takigawa T, Udayakunmar R, et al. Biomechanical effect of the C2 laminar decortication on the stability of C2 intralaminar screw construct and biomechanical comparison of C2 intralaminar screw and C2 pars screw. Neurosurgery. 2011; 69: ons1-ons7. doi: 10.1227/NEU.0b013e3182155657.
21. Hong X, Dong Y, Yunbing C, et al. Posterior screw placement on the lateral mass of atlas: an anatomic study. Spine. 2004; 29: 500-503.
22. Jandial R, Kelly B, Bucklen B, et al. Axial spondylectomy and circumferential reconstruction via a posterior approach. Neurosurgery. 2013; 72: 300-309. doi: 10.1227/NEU.0b013e31827b9d38.
23. Kwan MK, Chan CY, Kwan TC, et al. Safety issues and neurological improvement following C1-C2 fusion using C1 lateral mass and C2 pedicle screw in atlantoaxial instability. Malaysian Orthop J. 2010; 4: 17-22. doi: 10.5704/MOJ.1007.003
24. Lee MJ, Cassinelli E, Riew KD. The feasibility of inserting atlas lLateral mass screws via the posterior arch. Spine. 2006; 31: 2798-2801.
25. Ma W, Feng L, Xu R, et al. Clinical application of C2 laminar screw technique. Eur Spine J. 2010; 19: 1312-1317. doi: 10.1007/s00586-010-1447-1.
26. Meng XZ, Xu JX. The options of C2 fixation for os odontoideum: a radiographic study for the C2 pedicle and lamina anatomy. Eur Spine J. 2011; 20: 1921-1927. doi: 10.1007/s00586-011-1893-4.
27. Mueller CA, Roesseler L, Podloqar M, et al. Accuracy and complications of transpedicular C2 screw placement without the use of spinal navigation. Eur Spine J. 2010; 19: 809-814. doi: 10.1007/s00586-010-1291-3.
28. Neo M, Sakamoto T, Fujibayashi S, et al. A safe screw trajectory for atlantoaxial transarticular fixation achieved using an aiming device. Spine. 2005; 30: E236-E242.
29. Ni B, Guo X, Xie N, et al. Bilateral atlantoaxial transarticular screws and atlas laminar hooks fixation for pediatric atlantoaxial instability. Spine. 2010; 35: E1367-E1372. doi: 10.1097/BRS.0b013e3181e8ee87.
30. O’Brien JR, Gokasian ZL, Riley LH 3rd, et al. Open reduction of C1-C2 subluxation with the use of C1 lateral mass and C2 translaminar screws. Neurosurgery. 2008; 63: ONS97-ONS101. doi: 10.1227/01.neu.0000335021.14112.2e.
31. Pan J, Li L, Qian L, et al. C1 lateral mass screw insertion with protection of C1-C2 venous sinus: technical note and review of the literature. Spine. 2010; 35: E1133-E1136. doi: 10.1097/BRS.0b013e3181e215ff.
32. Peng X, Chen L, Wan Y, et al. Treatment of primary basilar invagination by cervical traction and posterior instrumented reduction together with occipitocervical fusion. Spine. 2011; 36: 1528-1531. doi: 10.1097/BRS.0b013e3181f804ff.
33. Samartzis D, Shen FH, Herman J, et al. Atlantoaxial rotatory fixation in the setting of associated congenital malformations: a modified classification system. Spine. 2010; 35: E119-E127. doi: 10.1097/BRS.0b013e3181c9f957.
34. Schulz R, Macchiavello N, Fernandez E, et al. Harms C1-C2 instrumentation technique anatomo-surgical guide. Spine. 2011; 36: 945-950. doi: 10.1097/BRS.0b013e3181e887df.
35. Sim HB, Lee JW, Park JT, et al. Biomechanical evaluations of various C1-C2 posterior fixation techniques. Spine. 2011; 36: E401-E407. doi: 10.1097/BRS.0b013e31820611ba.
36. Squires J, Molinari RW. C1 lateral mass screw placement with intentional sacrifice of the C2 ganglion: functional outcomes and morbidity in elderly patients. Eur Spine J. 2010; 19: 1318-1324. doi: 10.1007/s00586-010-1452-4.
37. Takigawa T, Simon P, Espinoza Orias AA, et al. Biomechanical comparison of occiput-C1-C2 fixation techniques: C0-C1 transarticular screw and direct occiput condyle screw. Spine. 2012; 37: E696-E701. doi: 10.1097/BRS.0b013e3182436669.
38. Wang S, Wang C, Leng H, et al. Cable-strengthened C2 pedicle screw fixation in the treatment of congenital C2-С3 fusion, atlas occipitalization, and atlantoaxial dislocation. Neurosurgery. 2012; 71: 976-984. doi: 10.1227/NEU.0b013e31826cdd3b.
39. Wang S, Wang C, Passias PG, et al. Pedicle versus laminar screws: what provides more suitable C2 fixation in congenital C2-С3 fusion patients? Eur Spine J. 2010; 19: 1306-1311. doi: 10.1007/s00586-010-1418-6.
40. Wright NM. Posterior C2 fixation using bilateral, crossing C2 laminar screws: case series and technical note. J Spinal Disord Tech. 2004; 17: 158-162.
41. Yeom JS, Kafle D, Nguyen NQ, et al. Routine insertion of the lateral mass screw via the posterior arch for C1 fixation: feasibility and related complications. Spine J. 2012; 12: 476-483. doi: 10.1016/j.spinee.2012.06.010.
42. Yue B, Kwak DS, Kim MK, et al. Morphometric trajectory analysis for the C2 crossing laminar screw technique. Eur Spine J. 2010; 19: 828-832. doi: 10.1007/s00586-010-1331-z.
43. Yuksel KZ, Crawford NR, Melton MS, et al. Augmentation of occipitocervical contoured rod fixation with C1-C2 transarticular screws. Spine J. 2007; 7: 180-187.
Review
For citations:
Gubin A.V., Burtsev A.V. POSTERIOR SCREW FIXATION OF THE CRANIOCERVICAL JUNCTION. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(2):42-48. (In Russ.) https://doi.org/10.14531/ss2014.2.42-48