Preview

Хирургия позвоночника

Расширенный поиск

КЛЕТОЧНЫЕ МАТРИЦЫ (СКАФФОЛДЫ) ДЛЯ ЦЕЛЕЙ РЕГЕНЕРАЦИИ КОСТИ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ

https://doi.org/10.14531/ss2014.2.79-86

Аннотация

В обзоре рассмотрены необходимые свойства тканеинженерных скаффолдов для обеспечения остеогенной дифференцировки, межклеточных сигнальных взаимодействий и васкуляризации скаффолда, которые во многом обеспечиваются за счет архитектуры скаффолда: наличия пористости и размеров пор, наличия и влияния канальной взаимосвязанности пор скаффолда на межклеточные взаимодействия. На основе литературных сведений показано, что геометрия поверхности, размеры пор и канальцев, обеспечивающих внутренние коммуникации между порами в матрице, собственно микроархитектура матрицы, рассматриваемые даже без учета влияния ростовых факторов и материалов, из которых изготовлены матрицы, могут оказывать влияние на клеточную пролиферацию, остеогенную индукцию и остеокондуктивные свойства, что реализуется через межклеточные взаимодействия.

Об авторах

Михаил Анатольевич Садовой
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия


Петр Михайлович Ларионов
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия


Александр Геннадьевич Самохин
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия


Ольга Михайловна Рожнова
Новосибирский НИИ травматологии и ортопедии им. Я.Л. Цивьяна
Россия


Список литературы

1. Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med. 2001; 12: 64-75.

2. Bartolo PJ, Almeida HA, Rezende RA, et al. Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bartolo PJ, eds, Virtual Prototyping and Bio Manufacturing in Medical Applications. New York, 2008: 149-170.

3. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008; 2: 81-96. doi: 10.1002/term.74.

4. Betz MW, Yeatts AB, Richbourg WJ, et al. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration. Biomacromolecules. 2010; 11: 1160-1168. doi: 10.1021/bm100061z.

5. Buxton PG, Bitar M, Gellynck K, et al. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone. 2008; 43: 377-385. doi: 10.1016/j.bone.2008.03.028.

6. Byrne EM, Farrell E, McMahon LA, et al. Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J Mater Sci Mater Med. 2008; 19: 3455-3466. doi: 10.1007/s10856-008-3506-2.

7. Chu TM, Orton DG, Hollister SJ, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002; 23: 1283-1293.

8. Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph. 2009; 33: 58-62. doi: 10.1016/j.compmedimag.2008.10.005.

9. Collins JM, Ayala P, Desai TA, et al. Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells. Small. 2010; 6: 355-360. doi: 10.1002/smll.200901757.

10. Daculsi G, Laboux O, Malard O, et al. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003; 14: 195-200.

11. Dean D, Wolfe MS, Ahmad Y, et al. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits. Tissue Eng. 2005; 11: 923-939.

12. Dulla Roy T, Simon JL, Ricci JL, et al. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res A. 2003; 67: 1228-1237.

13. Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials. Biomaterials. 2002; 23: 4333-4343.

14. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003; 88: 446-454.

15. Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998; 19: 133-139.

16. Harrington DA, Cheng EY, Guler MO, et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A. 2006; 78: 157-167.

17. Hollinger JO, Hart CE, Hirsch SN, et al. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008; 90(Suppl 1): 48-54. doi: 10.2106/JBJS.G.01231.

18. Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002; 23: 4095-4103.

19. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005; 4: 518-524.

20. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004; 22: 354-362. doi.org/10.1016/j.tibtech.2004.05.005.

21. Jansen J, Melchels FP, Grijpma DW, et al. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules. 2009; 10: 214-220. doi: 10.1021/bm801001r.

22. Jones AC, Arns CH, Hutmacher DW, et al. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009; 30: 1440-1451. doi: 10.1016/j.biomaterials.2008.10.056.

23. Jones AC, Arns CH, Sheppard AP, et al. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007; 28: 2491-2504.

24. Kanczler JM, Ginty PJ, Barry JJ, et al. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials. 2008; 29: 1892-1900. doi: 10.1016/j.biomaterials.2007.12.031.

25. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26: 5474-5491.

26. Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008; 4: 1904-1915. doi: 10.1016/j.actbio.2008.05.017.

27. Khatiwala CB, Kim PD, Peyton SR, et al. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res. 2009; 24: 886-898. doi: 10.1359/jbmr.081240.

28. Khatiwala CB, Peyton SR, Putnam AJ. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol. 2006; 290: 1640-1650.

29. Kim K, Dean D, Mikos AG, et al. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules. 2009; 10: 1810-1817. doi: 10.1021/bm900240k.

30. Klenke FM, Liu Y, Yuan H, et al. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008; 85: 777-786.

31. Kuo YC, Yeh CF, Yang JT. Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Biomaterials. 2009; 30: 6604-6613. doi: 10.1016/j.biomaterials.2009.08.028.

32. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003; 24: 2363-2378.

33. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009; 433: 1-7. doi: 10.1016/j.gene.2008.12.008.

34. Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999; 10: 111-120.

35. Maegawa N, Kawamura K, Hirose M, et al. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med. 2007; 1: 306-313.

36. Melchels FP, Feijen J, Grijpma DW. A poly (D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009; 30: 3801-3809. doi: 10.1016/j.biomaterials.2009.03.055.

37. Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol. 2005; 94: 1-22.

38. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010; 31: 461-466. doi: 10.1016/j.biomaterials.2009.09.063.

39. Mygind T, Stiehler M, Baatrup A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007; 28: 1036-1047.

40. Ng F, Boucher S, Koh S, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008; 112: 295-307. doi: 10.1182/blood-2007-07-103697.

41. Oh SH, Park IK, Kim JM, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007; 28: 1664-1671.

42. Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006; 27: 5892-6900. doi.org/10.1016/j.biomaterials.2006.08.013.

43. Park SH, Gil ES, Kim HJ, et al. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials. 2010; 31: 6162-6172. doi: 10.1016/j.biomaterials.2010.04.028.

44. Patel M, Dunn TA, Tostanoski S, et al. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. J Tissue Eng Regen Med. 2010; 4: 422-436. doi: 10.1002/term.252.

45. Petrie Aronin CE, Sadik KW, Lay AL, et al. Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A. 2009; 89: 632-641. doi: 10.1002/jbm.a.32015.

46. Phadke A, Hwang Y, Kim SH, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013; 25: 114-129.

47. Pham DT, Gault RS. A comparison of rapid prototyping technologies. Int J Machine Tools Manufacture. 1998; 38: 1257-1287.

48. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006; 8: 455-498.

49. Roosa SM, Kemppainen JM, Moffitt EN, et al. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A. 2010; 92: 359-368. doi: 10.1002/jbm.a.32381.

50. Rose FR, Cyster LA, Grant DM, et al. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials. 2004; 25: 5507-5514.

51. Roy TD, Simon JL, Ricci JL, et al. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A. 2003; 66: 283-291.

52. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006; 366: 51-57.

53. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004; 4: 743-765.

54. Senta H, Park H, Bergeron E, et al. Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine Growth Factor Rev. 2009; 20: 213-222. doi: 10.1016/j.cytogfr.2009.05.006.

55. Shor L, Guceri S, Wen X, et al. Fabrication of three-dimensional polycaprolactone / hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007; 28: 5291-5297.

56. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009; 20: 646-655. doi: 10.1016/j.semcdb.2009.03.017.

57. Tare RS, Babister JC, Kanczler J, et al. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol. 2008; 288: 11-21. doi: 10.1016/j.mce.2008.02.01.

58. Tierney CM, Haugh MG, Liedl J, et al. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2009; 2: 202-209. doi: 10.1016/j.jmbbm.2008.08.007.

59. Uebersax L, Hagenmuller H, Hofmann S, et al. Effect of scaffold design on bone morphology in vitro. Tissue Eng. 2006; 12: 3417-3429.

60. Volkmer E, Drosse I, Otto S, et al. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A. 2008; 14: 1331-1340. doi: 10.1089/ten.tea.2007.0231.

61. Waddell JP, Morton J, Schemitsch EH. The role of total hip replacement in intertrochanteric fractures of the femur. Clin Orthop. 2004; (429): 49-53.

62. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001; 7: 679-689.

63. Zandi M, Mirzadeh H, Mayer C, et al. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res A. 2010; 92: 1244-1255. doi: 10.1002/jbm.a.32452.


Рецензия

Для цитирования:


Садовой М.А., Ларионов П.М., Самохин А.Г., Рожнова О.М. КЛЕТОЧНЫЕ МАТРИЦЫ (СКАФФОЛДЫ) ДЛЯ ЦЕЛЕЙ РЕГЕНЕРАЦИИ КОСТИ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Хирургия позвоночника. 2014;(2):79-86. https://doi.org/10.14531/ss2014.2.79-86

For citation:


Sadovoy M.A., Larionov P.M., Samokhin A.G., Rozhnova O.M. CELLULAR MATRICES (SCAFFOLDS) FOR BONE REGENERATION: STATE OF THE ART. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(2):79-86. (In Russ.) https://doi.org/10.14531/ss2014.2.79-86



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)