КЛЕТОЧНЫЕ МАТРИЦЫ (СКАФФОЛДЫ) ДЛЯ ЦЕЛЕЙ РЕГЕНЕРАЦИИ КОСТИ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ
https://doi.org/10.14531/ss2014.2.79-86
Аннотация
Об авторах
Михаил Анатольевич СадовойРоссия
Петр Михайлович Ларионов
Россия
Александр Геннадьевич Самохин
Россия
Ольга Михайловна Рожнова
Россия
Список литературы
1. Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med. 2001; 12: 64-75.
2. Bartolo PJ, Almeida HA, Rezende RA, et al. Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bartolo PJ, eds, Virtual Prototyping and Bio Manufacturing in Medical Applications. New York, 2008: 149-170.
3. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008; 2: 81-96. doi: 10.1002/term.74.
4. Betz MW, Yeatts AB, Richbourg WJ, et al. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration. Biomacromolecules. 2010; 11: 1160-1168. doi: 10.1021/bm100061z.
5. Buxton PG, Bitar M, Gellynck K, et al. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone. 2008; 43: 377-385. doi: 10.1016/j.bone.2008.03.028.
6. Byrne EM, Farrell E, McMahon LA, et al. Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J Mater Sci Mater Med. 2008; 19: 3455-3466. doi: 10.1007/s10856-008-3506-2.
7. Chu TM, Orton DG, Hollister SJ, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002; 23: 1283-1293.
8. Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph. 2009; 33: 58-62. doi: 10.1016/j.compmedimag.2008.10.005.
9. Collins JM, Ayala P, Desai TA, et al. Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells. Small. 2010; 6: 355-360. doi: 10.1002/smll.200901757.
10. Daculsi G, Laboux O, Malard O, et al. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003; 14: 195-200.
11. Dean D, Wolfe MS, Ahmad Y, et al. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits. Tissue Eng. 2005; 11: 923-939.
12. Dulla Roy T, Simon JL, Ricci JL, et al. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res A. 2003; 67: 1228-1237.
13. Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials. Biomaterials. 2002; 23: 4333-4343.
14. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003; 88: 446-454.
15. Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998; 19: 133-139.
16. Harrington DA, Cheng EY, Guler MO, et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A. 2006; 78: 157-167.
17. Hollinger JO, Hart CE, Hirsch SN, et al. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008; 90(Suppl 1): 48-54. doi: 10.2106/JBJS.G.01231.
18. Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002; 23: 4095-4103.
19. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005; 4: 518-524.
20. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004; 22: 354-362. doi.org/10.1016/j.tibtech.2004.05.005.
21. Jansen J, Melchels FP, Grijpma DW, et al. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules. 2009; 10: 214-220. doi: 10.1021/bm801001r.
22. Jones AC, Arns CH, Hutmacher DW, et al. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009; 30: 1440-1451. doi: 10.1016/j.biomaterials.2008.10.056.
23. Jones AC, Arns CH, Sheppard AP, et al. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007; 28: 2491-2504.
24. Kanczler JM, Ginty PJ, Barry JJ, et al. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials. 2008; 29: 1892-1900. doi: 10.1016/j.biomaterials.2007.12.031.
25. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26: 5474-5491.
26. Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008; 4: 1904-1915. doi: 10.1016/j.actbio.2008.05.017.
27. Khatiwala CB, Kim PD, Peyton SR, et al. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res. 2009; 24: 886-898. doi: 10.1359/jbmr.081240.
28. Khatiwala CB, Peyton SR, Putnam AJ. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol. 2006; 290: 1640-1650.
29. Kim K, Dean D, Mikos AG, et al. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules. 2009; 10: 1810-1817. doi: 10.1021/bm900240k.
30. Klenke FM, Liu Y, Yuan H, et al. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008; 85: 777-786.
31. Kuo YC, Yeh CF, Yang JT. Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Biomaterials. 2009; 30: 6604-6613. doi: 10.1016/j.biomaterials.2009.08.028.
32. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003; 24: 2363-2378.
33. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009; 433: 1-7. doi: 10.1016/j.gene.2008.12.008.
34. Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999; 10: 111-120.
35. Maegawa N, Kawamura K, Hirose M, et al. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med. 2007; 1: 306-313.
36. Melchels FP, Feijen J, Grijpma DW. A poly (D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009; 30: 3801-3809. doi: 10.1016/j.biomaterials.2009.03.055.
37. Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol. 2005; 94: 1-22.
38. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010; 31: 461-466. doi: 10.1016/j.biomaterials.2009.09.063.
39. Mygind T, Stiehler M, Baatrup A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007; 28: 1036-1047.
40. Ng F, Boucher S, Koh S, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008; 112: 295-307. doi: 10.1182/blood-2007-07-103697.
41. Oh SH, Park IK, Kim JM, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007; 28: 1664-1671.
42. Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006; 27: 5892-6900. doi.org/10.1016/j.biomaterials.2006.08.013.
43. Park SH, Gil ES, Kim HJ, et al. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials. 2010; 31: 6162-6172. doi: 10.1016/j.biomaterials.2010.04.028.
44. Patel M, Dunn TA, Tostanoski S, et al. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. J Tissue Eng Regen Med. 2010; 4: 422-436. doi: 10.1002/term.252.
45. Petrie Aronin CE, Sadik KW, Lay AL, et al. Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A. 2009; 89: 632-641. doi: 10.1002/jbm.a.32015.
46. Phadke A, Hwang Y, Kim SH, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013; 25: 114-129.
47. Pham DT, Gault RS. A comparison of rapid prototyping technologies. Int J Machine Tools Manufacture. 1998; 38: 1257-1287.
48. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006; 8: 455-498.
49. Roosa SM, Kemppainen JM, Moffitt EN, et al. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A. 2010; 92: 359-368. doi: 10.1002/jbm.a.32381.
50. Rose FR, Cyster LA, Grant DM, et al. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials. 2004; 25: 5507-5514.
51. Roy TD, Simon JL, Ricci JL, et al. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A. 2003; 66: 283-291.
52. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006; 366: 51-57.
53. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004; 4: 743-765.
54. Senta H, Park H, Bergeron E, et al. Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine Growth Factor Rev. 2009; 20: 213-222. doi: 10.1016/j.cytogfr.2009.05.006.
55. Shor L, Guceri S, Wen X, et al. Fabrication of three-dimensional polycaprolactone / hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007; 28: 5291-5297.
56. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009; 20: 646-655. doi: 10.1016/j.semcdb.2009.03.017.
57. Tare RS, Babister JC, Kanczler J, et al. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol. 2008; 288: 11-21. doi: 10.1016/j.mce.2008.02.01.
58. Tierney CM, Haugh MG, Liedl J, et al. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2009; 2: 202-209. doi: 10.1016/j.jmbbm.2008.08.007.
59. Uebersax L, Hagenmuller H, Hofmann S, et al. Effect of scaffold design on bone morphology in vitro. Tissue Eng. 2006; 12: 3417-3429.
60. Volkmer E, Drosse I, Otto S, et al. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A. 2008; 14: 1331-1340. doi: 10.1089/ten.tea.2007.0231.
61. Waddell JP, Morton J, Schemitsch EH. The role of total hip replacement in intertrochanteric fractures of the femur. Clin Orthop. 2004; (429): 49-53.
62. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001; 7: 679-689.
63. Zandi M, Mirzadeh H, Mayer C, et al. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res A. 2010; 92: 1244-1255. doi: 10.1002/jbm.a.32452.
Рецензия
Для цитирования:
Садовой М.А., Ларионов П.М., Самохин А.Г., Рожнова О.М. КЛЕТОЧНЫЕ МАТРИЦЫ (СКАФФОЛДЫ) ДЛЯ ЦЕЛЕЙ РЕГЕНЕРАЦИИ КОСТИ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Хирургия позвоночника. 2014;(2):79-86. https://doi.org/10.14531/ss2014.2.79-86
For citation:
Sadovoy M.A., Larionov P.M., Samokhin A.G., Rozhnova O.M. CELLULAR MATRICES (SCAFFOLDS) FOR BONE REGENERATION: STATE OF THE ART. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(2):79-86. (In Russ.) https://doi.org/10.14531/ss2014.2.79-86