CREATION OF TISSUE-ENGINEERED LIVING BONE EQUIVALENT AND PROSPECTS FOR ITS APPLICATION IN TRAUMATOLOGY AND ORTHOPAEDICS
https://doi.org/10.14531/ss2014.3.77-85
Abstract
Objective. To present experimental prototypes of tissue-engineered bone equivalent (TEBE) based on nanostructured bioresorbable synthetic polymer cellular matrices (BSPCMs) and osteogenic differentiated cells created to repair bone defects.
Material and Methods. Nanostructured BSPCMs were developed and produced, which further served as the basis for creating TEBE. Cultured cells were transferred on the surface of nanostructured matrix, where patterns of their growth, expansion, and behavior were studied. Topography and surface properties of TEBE prototypes were investigated using methods of light-optical, scanning electron, and atomic force microscopy.
Results. A possibility of creating experimental TEBE prototype based on BSPCM, which copies to the maximum extent the bone structure at the micro- and nanoscales is shown. Surface of the BSPCM was additionally nanostructured by formation of longitudinally oriented nano-trenches, to increase adhesion and osteoconductive properties.
Conclusion. A strategy for creating nanostructured BSPCM and TEBE was developed, and experimental prototypes suitable for further investigations to form biodegradable implants for needs of traumatology, orthopaedics, and spine medicine were produced.
About the Authors
Pyotr Mikhailovich LarionovRussian Federation
Mikhail Anatolyevich Sadovoy
Russian Federation
Aleksandr Gennadyevich Samokhin
Russian Federation
Olga Mikhailovna Rozhnova
Russian Federation
Arkady Fedorovich Gusev
Russian Federation
Viktor Yakovlevich Prinz
Russian Federation
Vladimir Aleksandrovich Seleznev
Russian Federation
Sergey Vladislavovich Golod
Russian Federation
Aleksandr Viktorovich Prinz
Russian Federation
Ivan Aleksandrovich Korneev
Russian Federation
Aleksandr Ivanovich Komonov
Russian Federation
Ekaterina Vladimirovna Mamonova
Russian Federation
Yulia Nikolayevna Malyutina
Russian Federation
Vladimir Andreyevich Bataev
Russian Federation
References
1. Внутренняя архитектура кости [Электронный ресурс]. http://www.medical-enc.ru/anatomy/vnutrennyaya-arhitektura-kosti.shtml
2. Деев Р.В., Цупкина Н.В., Бозо И.Я. и др. Тканеинженерный эквивалент кости: методологические основы создания и биологические свойства // Клеточная трансплантология и тканевая инженерия. 2011. Т. VI. № 1. С. 63-67.
3. Костная ткань [Электронный ресурс]. http://hystology.ru/kostnaja_tkan.html
4. Севастьянов В.И., Перова Н.В., Довжик И.А. Основные принципы подхода к доклинической оценке имплантатов // Технология живых систем. 2009. Т. 6. № 4. С. 10-20.
5. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей / Под ред. А.А. Лушниковой. М., 2007.
6. Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H. 2010; 224: 1487-1507.
7. Biggs MJ, Richards RG, Gadegaard N, et al. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009; 30: 5094-5103. doi: 10.1016/j.biomaterials.2009.05.049.
8. Cai Y, Liu P, Tang R. Recent patents on nano calcium phosphates. Recent Patents on Materials Science. 2008; 1: 209-216.
9. Dalby MJ, Macintyre A, Roberts JN, et al. Nanoporous titanium substrates for osteogenesis. Nanomedicine (Lond). 2012; 7: 19.
10. Kingham EJ, Tsimbouri PM, Gadegaard N, et al. Nanotopography induced osteogenic differentiation of human stem cells. Bone. 2011; 48: S108-S109. doi: 10.1016/j.bone.2011.03.177.
11. Martins AM, Alves CM, Kasper FK, et al. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J Mater Chem. 2010; 20: 1638-1645. doi: 10.1039/B916259N.
12. McNamara LE, Sjöström T, Burgess K, et al. Characterisation of mesenchymal stem cell responses to titanium nanopillars for orthopaedic applications. Eur Cell Mater. 2011; 22(Suppl 2): 7.
13. Morris HL, Reed CI, Haycock JW, et al. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1509-1521.
14. Navarro M, Planell JA. Composite scaffolds for bone tissue regeneration. In: Wiley Encyclopedia of Composites. 2011: 1-14.
15. Ponche A, Bigerelle M, Anselme K. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: physico-chemical effects. Proc Inst Mech Eng H. 2010; 224: 1471-1486.
16. Smith IO, Liu XH, Smith LA, et al. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009; 1: 226-236. doi: 10.1002/wnan.26.
17. Special Issue on Bone Tissue Engineering. Proc Inst Mech Eng H: Journal of Engineering in Medicine. 2010; 224: 1329-1566.
18. Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1359-1372.
19. Tare RS, Kanczler J, Aarvold A, et al. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H. 2010; 224: 1455-1470.
20. Thompson MS, Epari DR, Bieler F, et al. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H. 2010; 224: 1533-1541.
21. Willie BM, Petersen A, Schmidt-Bleek K, et al. Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter. 2010; 6: 4976-4987. doi: 10.1039/C0SM00262C.
22. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009; 4: 66-80. doi: 10.1016/j.nantod.2008.10.014.
23. Zorlutuna P, Annabi N, Camci-Unal G, et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater. 2012; 24: 1782-1804.
Review
For citations:
Larionov P.M., Sadovoy M.A., Samokhin A.G., Rozhnova O.M., Gusev A.F., Prinz V.Ya., Seleznev V.A., Golod S.V., Prinz A.V., Korneev I.A., Komonov A.I., Mamonova E.V., Malyutina Yu.N., Bataev V.A. CREATION OF TISSUE-ENGINEERED LIVING BONE EQUIVALENT AND PROSPECTS FOR ITS APPLICATION IN TRAUMATOLOGY AND ORTHOPAEDICS. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(3):77-85. (In Russ.) https://doi.org/10.14531/ss2014.3.77-85