GENE EXPRESSION IN GROWTH PLATE CHONDROCYTES OF PATIENTS WITH IDIOPATHIC SCOLIOSIS
https://doi.org/10.14531/ss2014.4.88-98
Abstract
Objective. To analyze the expression of candidate genes presumably responsible for the development of idiopathic scoliosis.
Material and Methods. The study subjects were vertebral body growth plates of children aged 11-15 years suffering from Grade III-IV idiopathic scoliosis. Real-Time SYBR Green PCR assay was used to investigate the expression of genes responsible for growth regulation, chondrogenic differentiation, matrix formation and synthesis, and sulfation and transmembrane transport of sulfates.
Results. Comparative analysis of gene expression did not give a clear answer. On the background of representative morphological and biochemical data including violation of the structural organization of cells and matrix on the concave side of deformity, presence of poorly differentiated chondroblasts, and lack of differentiation in columnar and hypertrophic structures, a sharp decline in synthetic potency of cells contradicted the data on high expression of IHH, TGFBR1, and EGFR genes, matrix proteoglycans genes ACAN, LUM, and VCAN, collagen types I and II, and of sulfation and sulfate transmembrane transport genes DTDST, CHST1, and CHST3. Expression of growth hormone receptor gene, differentiation genes SOX9 and PAX9, and link protein gene was reduced. Factor analysis of the studied genes has shown significant difference between gene expression in chondroblasts of patients with idiopathic scoliosis and that in controls.
Conclusion. Complex interaction of genes under the control of the central regulatory mechanisms coordinates the periodization of gene turning on, thereby integrating the process of the spine growth. Violation of any of the factors in the complex system of morphogenesis regulation causes asymmetric growth resulting in scoliosis development.
About the Authors
Alla Mikhailovna ZaidmanRussian Federation
Elena Leonidovna Strokova
Russian Federation
Vyacheslav Viktorovich Novikov
Russian Federation
Aleksandr Sergeyevich Vasyura
Russian Federation
Mikhail Vitalyevich Mikhailovsky
Russian Federation
Mikhail Anatolyevich Sadovoy
Russian Federation
References
1. Зайдман А.М. Идиопатический сколиоз: морфология, биохимия, генетика. Новосибирск, 1994. [Zaidman AM. Idiopathic Scoliosis: Morphology, Biochemistry, Genetics. Novosibirsk, 1994. In Russian].
2. Зайдман А.М., Бородин П.М., Русова Т.В. Экспериментальная модель наследственной деформации позвоночника // Вестн. травматол. и ортопед. им. Н.Н. Приорова. 2003. № 4. С. 69-73. [Zaidman AM, Borodin PM, Rusova TV. Experimental model of congenital spinal deformity. Vestn. тravmatol. i ortoped. im. N.N. Priorova. 2003;(4):69-73. In Russian].
3. Зайдман А.М., Михайловский М.В., Садовая Т.Н. Структурно-функциональные особенности деформации позвоночника при нейрофиброматозе NF-1 // Хирургия позвоночника. 2008. №3. С. 73-80. [Zaidman AM, Mikhailovsky MV, Sadovaya TN. Structural and functional peculiarities of spine deformity development in neurofibromatosis NF-1. Hir Pozvonoc. 2008;(3):73-80. In Russian].
4. Зайдман А.М., Михайловский М.В., Садовой М.А. Сколиоз и нейрофиброматоз. Новосибирск, 2011. С. 107. [Zaidman AM, Mikhailovsky MV, Sadovoy MA. Neurofibromatosis and Scoliosis. Novosibirsk, 2011. In Russian].
5. Зайдман А.М., Садовой М.А., Строкова Е.Л. и др. Морфофункциональные закономерности регуляции хондрогенеза пластинок роста тел позвонков и подвздошной кости // Хирургия позвоночника. 2013. № 3. С. 68-80. [Zaidman AM, Sadovoy MA, Strokova EL, et al. Morphofunctional laws regulating chondrogenesis in vertebral and iliac bone growth plates. Hir Pozvonoc. 2013;(3):68-80. In Russian]. doi: http://dx.doi.org/10.14531/ss2013.3.68-80.
6. Andersen E, Sonnesen L, Kjaer MS, et al. The prenatal cranial base complex and hand in Turner syndrome. Eur J Orthod. 2000;22:185-194.
7. Axenovich TI, Zaidman AM, Zorkoltseva IV, et al. Segregation analysis of idiopathic scoliosis, demonstration of a major gene effect. Am J Med Genetics. 1999;86:389-394.
8. DiPaola CP, Farmer JC, Manova K, et al. Molecular signaling in intervertebral disk development. J Orthop Res. 2005;23:1112-1119.
9. Gorman KF, Julien C, Moreau A. The genetic epidemiology of idiopathic scoliosis. Eur Spine J. 2012;21:1905-1919. doi: 10.1007/s00586-012-2389-6.
10. James CG, Stanton LA, Agoston H, et al. Genome-wide analyses of gene expression during mouse endochondral ossification. PLoS ONE. 2010;5:e8693. doi: 10.1371/journal.pone.0008693.
11. Kornak U, Mundlos S. Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet. 2003;73:447-474, 2003.
12. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627-644.
13. Miyazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 2001;187:265-276.
14. Sharma S, Gao X, Londono D, et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet. 2011;20:1456-1466. doi: 10.1093/hmg/ddq571.
15. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613-622.
Review
For citations:
Zaidman A.M., Strokova E.L., Novikov V.V., Vasyura A.S., Mikhailovsky M.V., Sadovoy M.A. GENE EXPRESSION IN GROWTH PLATE CHONDROCYTES OF PATIENTS WITH IDIOPATHIC SCOLIOSIS. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(4):88-98. (In Russ.) https://doi.org/10.14531/ss2014.4.88-98