Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

POSSIBILITY OF PREVENTIVE CORRECTION OF DYSTROPHIC CHANGES IN INTERVERTEBRAL DISC BY CELL ENGINEERING TECHNIQUE

https://doi.org/10.14531/ss2007.3.65-73

Abstract

Objective. To study a possibility of cultured chondroblast transplantation into nucleus pulposus of the intact intervertebral disc for correction of structural-functional disorders at early stages of degeneration. Material and Methods. Chondroblasts isolated from the spine of newborn wild-type puppies were cultured in appropriate media. Second passage chondroblasts were transplanted into intervertebral disc of wild-type mature dogs. Specimens were extracted at 14 days, 1, 3, and 6 months and studied using biochemical, in-depth morphohistochemical, and ultrastructural analyses. Aggrecan gene expression in a transplant was analyzed by a polymeraze chain reaction. Results. Second-passage chondroblasts transplanted into intervertebral disc realize their genetic program in several steps. During first two weeks an adaptation of chondroblasts to metabolic conditions in vivo is observed. The process of cell functioning consists in auto- and paracrine regulation, and cells are under steady-state condition. The second stage includes activation of synthetic and mitotic processes, formation of extracellular matrix, and amplification of the ultrastructural organization of chondroblasts. At the third stage isogene groups, columnar structures, and chondronic organization are registered. This testifies to multilevel organization of cell functioning providing a formation of organospecific hyaline cartilage. Conclusion. Chondroblasts transplanted into appropriate metabolic medium are subjected to multilevel evolutionary fixed regulation resulting in formation of specific hyaline cartilage which can facilitate structural-functional integrity of the intervertebral disc.

About the Authors

Alla Mikhailovna Zaidman
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


Irina Innokentyevna Kim
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


Anastasia Viktorovna Korel
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


Sergey Petrovich Markin
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


References

1. Жданов Д.А. Лекции по функциональной анатомии человека. М., 1979.

2. Зайдман А.М. Идиопатический сколиоз. Новосибирск, 1994.

3. Зайдман А.М., Бурухин А.В., Лазарев А.А. Структурные изменения межпозвонковых дисков в острой стадии остеохондроза и их значение в патогенезе болезни. Морфологическое и авторадиографическое исследование // Инф. бюл. СО АМН СССР. 1982. № 4. С. 58–63.

4. Зайдман А.М., Сахаров А.В., Колокольцева Т.Д. Культура хондробластов как потенциальный источник для тканевой инженерии при повреждениях и заболеваниях позвоночника // Хирургия позвоночника. 2004. № 4. С. 115–121.

5. Зайдман А.М., Филиппова Г.Н. Структурно-метаболические особенности диска при остеохондрозе и возможности его коррекции. Патология позвоночника. Л., 1980.

6. Корочкин Л.И. Взаимодействие генов в развитии. М., 1977.

7. Сухих Г.Т., Малайцев В.В., Богданова И.М. Мезенхимальные стволовые клетки // Бюл. эмбриологии. 2002. Т. 133. № 2. С. 1284–131.

8. Bitter T., Muir H.M. A modified uronic acid carbazole reaction // Anal. Biochem. 1962. Vol. 4. P. 330–334.

9. DePalma A.F., Rothman R.H. The intervertebral disc. Philadelphia, 1970.

10. Dommisse G.F. The vulnerable, rapidly growing thoracic spine of the adolescent // S. Afr. Med. J. 1990. Vol. 78. P. 211–213.

11. Eyring E.J. The biochemistry and physiology of the intervertebral disc // Clin. Orthop. Relat. Res. 1969. N 67. P. 16–28.

12. Hashizume H. Three-dimensional architecture and development of lumbar intervertebral discs // Acta. Med. Okayama. 1980. Vol. 34. P. 301–314.

13. Hayes A.J., Benjamin M., Ralphs J. Extracellular matrix in development of the intervertebral disc // Matrix Biol. 2001. Vol. 20. P. 107–121.

14. Johnson P.H. The lumbar disc // J. Ark. Med. Soc. 1979. Vol. 75. P. 297–301.

15. Nachemson A. Towards a better understanding of low-back pain: a review of the mechanics of lumbar disc // Rheumatol. Rehabil. 1975. Vol. 14. P. 129–143.

16. Selard E., Shirazi-Adl A., Urban J.P. Finite element study of nutrient diffusion in the human intervertebral disc // Spine. 2003. Vol. 17. P. 1945–1953.

17. Taylor T.K., Melrose J., Burkhardt D., et al. Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells // Spine. 2000. Vol. 25. P. 3014–3020.

18. Urban J.P., Roberts S. Development and degeneration of intervertebral discs // Mol. Med. Today. 1995. Vol. 1. P. 329–335.

19. Van de Lest C.H., Versteeg E.M., Veerkamp J.H., et al. Quantification and characterization of glycosaminoglycans at the nanogram level by a combined azure A-silver staining in agarose gels // Anal. Biochem. 1994. Vol. 221. P. 356–361.

20. White A.A., Panjabi M.M. Clinical Biomechanics of the Spine. Philadelphia, 1978.


Review

For citations:


Zaidman A.M., Kim I.I., Korel A.V., Markin S.P. POSSIBILITY OF PREVENTIVE CORRECTION OF DYSTROPHIC CHANGES IN INTERVERTEBRAL DISC BY CELL ENGINEERING TECHNIQUE. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2007;(3):065-073. (In Russ.) https://doi.org/10.14531/ss2007.3.65-73



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)