Preview

"Хирургия позвоночника"

Расширенный поиск

ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ ДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ МЕЖПОЗВОНКОВЫХ ДИСКОВ

https://doi.org/10.14531/ss2007.4.41-46

Полный текст:

Аннотация

Обзор литературы посвящен экспериментальным моделям дегенеративно-дистрофических заболеваний межпозвонковых дисков. Представлены основные подходы в биомоделировании патологии межпозвонковых дисков. Проведен анализ зарубежной литературы, в которой рассмотрены современные подходы и методики верификации патоморфологических процессов в тканях межпозвонковых дисков, выявлены недостатки различных методик и определены пути их преодоления.

Об авторе

Алексей Вадимович Волков
ЗАО «Реабилитационные медицинские технологии», Москва
Россия


Список литературы

1. Anderson D.G., Izzo M.W., Hall D.J., et al. Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model // Spine. 2002. Vol. 27. P. 1291–1296.

2. Ariga K., Miyamoto S., Nakase T., et al. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc // Spine. 2001. Vol. 26. P. 2414–2420.

3. Bailey A.S., Adler F., Min Lai S., et al. A comparison between bipedal and quadrupedal rats: do bipedal rats actually assume an upright posture? // Spine. 2001. Vol. 26. P. E308–E313.

4. Bradford D.S., Cooper K.M., Oegema T.R.Jr. Chymopapain, chemonucleolysis and nucleus pulposus regeneration // J. Bone Joint Surg. Am. 1983. Vol. 65. P. 1220–1231.

5. Cassidy J.D., Yong-Hing K., Kirkaldy-Willis W.H., et al. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat // Spine. 1988. Vol. 13. P. 301–308.

6. Ching C.T., Chow D.H., Yao F.Y., et al. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model // Med. Eng. Phys. 2004. Vol. 26. P. 587–594.

7. Ching C.T., Chow D.H., Yao F.Y., et al. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model // Clin. Biomech. (Bristol, Avon). 2003. Vol. 18. P. 182–189.

8. Gruber H.E., Ashraf N., Kilburn J., et al. Vertebral endplate architecture and vascularization: application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat // Spine. 2005. Vol. 30. P. 2593–2600.

9. Gruber H.E., Gordon B., Williams C., et al. Bone mineral density of lumbar vertebral end plates in the aging male sand rat spine // Spine. 2003. Vol. 28. P. 1766–1772.

10. Iatridis J.C., Mente P.L., Stokes I.A., et al. Compression-induced changes in intervertebral disc properties in a rat tail model // Spine. 1999. Vol. 24. P. 996–1002.

11. Kaapa E., Holm S., Han X., et al. Collagens in the injured porcine intervertebral disc // J. Orthop. Res. 1994. Vol. 12. P. 93–102.

12. Kim J.S., et al. Successful in vivo gene transfer to intervertebral discs in a slowly progressive and reproducible animal model of disc degeneration // 50th Annual Meeting of the Orthopaedic Research Society, San Francisco, 2004.

13. Kim K.S., Yoon S.T., Li J., et al. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models // Spine. 2005. Vol. 30. P. 33–37.

14. Kroeber M.W., Unglaub F., Wang H., et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration // Spine. 2002. Vol. 27. P. 2684–2690.

15. Lipson S.J., Muir H. Proteoglycans in experimental intervertebral disc degeneration // Spine. 1981. Vol. 6. P. 194–210.

16. Lotz J.C. Animal models of intervertebral disc degeneration: lessons learned // Spine. 2004. Vol. 29. P. 2742–2750.

17. Lotz J.C., Colliou O.K., Chin J.R., et al. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study // Spine. 1998. Vol. 23. P. 2493–2506.

18. MacLean J.J., Lee C.R., Grad S., et al. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo // Spine. 2003. Vol. 28. P. 973–981.

19. Miyamoto S., Yonenobu K., Ono K. Experimental cervical spondylosis in the mouse // Spine. 1991. Vol. 16. P. S495–S500.

20. Moskowitz R.W., Ziv I., Denko C.W., et al. Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis // J. Orthop. Res. 1990. Vol. 8. P. 401–411.

21. Masuda K., Aota Y., Muehleman C., et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration // Spine. 2005. Vol. 30. P. 5–14.

22. Norcross J.P., Lester G.E., Weinhold P., et al. An in vivo model of degenerative disc disease // J. Orthop. Res. 2003. Vol. 21. P. 183–188.

23. Pazzaglia U.E., Andrini L., Di Nucci A. The effects of mechanical forces on bones and joints. Experimental study on the rat tail // J. Bone Joint Surg. Br. 1997. Vol. 79. P. 1024–1030.

24. Phillips F.M., Reuben J., Wetzel F.T. Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model // J. Bone Joint Surg. Br. 2002. Vol. 84. P. 289–294.

25. Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats // Spine. 1988. Vol. 13. P. 202–208.

26. Stokes I.A., Iatridis J.C. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization // Spine. 2004. Vol. 29. P. 2724–2732.

27. Sugimura T., Kato F., Mimatsu K., et al. Experimental chemonucleolysis with chondroitinase ABC in monkeys // Spine. 1996. Vol. 21. P. 161–165.

28. Takahashi T., Kurihara H., Nakajima S., et al. Chemonucleolytic effects of chondroitinase ABC on normal rabbit intervertebral discs. Course of action up to 10 days postinjection and minimum effective dose // Spine. 1996. Vol. 21. P. 2405–2411.

29. Wilson C., Brown D., Najarian K., et al. Computer aided vertebral visualization and analysis: a methodology using the sand rat, a small animal model of disc degeneration // BMC Musculoskelet Disord. 2003. N 4. P. 4.

30. Yamada K., Tanabe S., Ueno H., et al. Investigation of the short-term effect of chemonucleolysis with chondroitinase ABC // J. Vet. Med. Sci. 2001. Vol. 63. P. 521–525.

31. Ziran B.H., Pineda S., Pokharna H., et all. Biomechanical, radiologic, and histopathologic correlations in the pathogenesis of experimental intervertebral disc disease // Spine. 1994. Vol. 19. P. 2159–2163.

32. Ziv I., Moskowitz R.W., Kraise I., et al. Physicochemical properties of the aging and diabetic sand rat intervertebral disc // J. Orthop. Res. 1992. Vol. 10. P. 205–210.


Для цитирования:


Волков А.В. ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ ДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ МЕЖПОЗВОНКОВЫХ ДИСКОВ. "Хирургия позвоночника". 2007;(4):041-046. https://doi.org/10.14531/ss2007.4.41-46

For citation:


Volkov A.V. EXPERIMENTAL MODELS OF DEGENERATION DISC DISEASES. Hirurgiâ pozvonočnika (Spine Surgery). 2007;(4):041-046. (In Russ.) https://doi.org/10.14531/ss2007.4.41-46

Просмотров: 126


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)