Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

DECOMPRESSION AND STABILIZATION SURGERY USING CUSTOM-MADE 3D PRINTED CAGES

https://doi.org/10.14531/ss2018.1.65-70

Abstract

The paper describes a method for three-dimensional printing of сustom-made interbody cages accounting for biomechanical parameters of the intervertebral disc (anteroposterior size, anterior and posterior disc heights), which provides the implant with unique characteristics. An example of using custom-made cages providing optimal conditions for the formation of interbody bone-metal block due to the extra tight fit of the combined implant is given. It is shown that custom-made cages have a beneficial effect on the spine support recovery time, significantly reduce the surgical injury, and shorten the time of surgery. The manufacturing of each developed implant which has its own form and architecture is not a serial but a piece production not requiring additional registration procedure. The use of custommade spinal cages allows optimizing the process of surgical treatment and improving short- and medium-term results.

About the Authors

A. V. Peleganchuk
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

Aleksey Vladimirovich Peleganchuk - MD, PhD, junior researcher, traumatologist-orthopedist in the Neurosurgery Department No. 2.

Frunze str., 17, 630091, Novosibirsk


V. A. Bazlov
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

Vyacheslav Aleksandrovich Bazlov - orthopedic Surgeon, Department of Traumatology and Orthopedics N 2.

Frunze str., 17, 630091, Novosibirsk



A. V. Krutko
Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan
Russian Federation

Aleksandr Vladimirovich Krutko - MD, DMSc, Head of Neurosurgery Department No. 2.

Frunze str., 17, 630091, Novosibirsk



References

1. 3D-принтеры сегодня [Электронный ресурс]. http://3dtoday.ru/wiki/SLS_print/. [3D printers today. URL: http://3dtoday.ru/wiki/SLS_print/. In Russian].

2. Баитов В.С., Мамуладзе Т.З., Базлов В.А. Возможности использования объемного моделирования и 3D-печати с целью создания индивидуальных артродезирующих конструкций в ревизионном эндопротезировании коленного сустава // Международный журнал прикладных и фундаментальных исследований. 2016. № 12 (7). С. 1189–1193. [Baitov VS, Mamuladze TZ, Bazlov VA. The possibility of using three-dimensional modeling and 3D printing to create individual arthrodesis designs in revision arthroplasty of the knee joint. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovaniy. 2016;12(7):1189–1193. In Russian].

3. Мазуренко А.Н. Задний межтеловой спондилодез поясничного отдела позвоночника с применением титановых имплантатов // Медицинские новости. 2013. № 7. С. 36–41. [Mazurenko AN. Posterior lumbar interbody fusion utilizing titanium implants. Medicinskie novosti. 2013;7:36–41. In Russian].

4. Chapman JR, Dettori JR, Norvell DC. Spine Classifications and Severity Measures. Thieme Medical Publishers, 2009.

5. Doherty P, Welch A, Tharpe J, Moore C, Ferry C. Transforaminal lumbar interbody fusion with rigid interspinous process fixation: a learning curve analysis of a surgeon team’s first 74 cases. Cureus. 2017;9:e1290. DOI: 10.7759/cureus.1290.

6. Leven DM, Lee NJ, Kim JS, Kothari P, Steinberger J, Guzman J, Skovrlj B, Shin JI, Phan K, Caridi JM, Cho SK. Frailty is predictive of adverse postoperative events in patients undergoing lumbar fusion. Global Spine J. 2017;7:529–535. DOI: 10.1177/2192568217700099.

7. Mummaneni PV, Haid RW, Rodts GE. Lumbar interbody fusion: state-of-the-art technical advances. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves. J Neurosurg Spine. 2004;1:24–30. DOI: 10.3171/spi.2004.1.1.0024.

8. Oliver MD, Cahill DW, Hajjar MV. Posterior lumbar interbody fusion. Techniques in Neurosurgery. 2001;7:127–139.

9. Pan J, Li L, Quan L, Zhou W, Tan J, Zou L, Yang M. Spontaneous slip reduction of low-grade isthmic spondylolisthesis following circumferential release via bilateral minimally invasive transforaminal lumbar interbody fusion: technical note and shortterm outcome. Spine. 2011;36:283–289. DOI: 10.1097/BRS.0b013e3181cf7640.

10. Park P, Foley KT. Minimally invasive transforaminal lumbar interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum of 2 years’ follow-up. Neurosurg Focus. 2008;25:E16. DOI: 10.3171/FOC/2008/25/8/E16.

11. Phillips FM, Lauryssen C, eds. The Lumbar Intervertebral Disc. Thieme. 2010.

12. Ugokwe KT, Lu JJ, Benzel EC. Biomechanics of the spine. In: Spinal Deformity: A Guide to Surgical Planning and Management, ed. by PV Mummaneni, LG Lenke, RW Haid. Quality Medical Publishing. 2008:3–46.

13. Zhang BF, Ge CY, Zheng BL, Hao DJ. Transforaminal lumbar interbody fusion versus posterolateral fusion in degenerative lumbar spondylosis: A meta-analysis. Medicine (Baltimore). 2016;95:e4995. DOI: 10.1097/MD.0000000000004995.


Review

For citations:


Peleganchuk A.V., Bazlov V.A., Krutko A.V. DECOMPRESSION AND STABILIZATION SURGERY USING CUSTOM-MADE 3D PRINTED CAGES. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2018;15(1):65-70. https://doi.org/10.14531/ss2018.1.65-70



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)