Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

MATHEMATICAL ANALYSIS AND OPTIMIZATION OF DESIGN CHARACTERISTICS OF STABILIZING VERTEBRAL BODY REPLACING SYSTEMS FOR SUBAXIAL CERVICAL FUSION USING THE FINITE ELEMENT METHOD

https://doi.org/10.14531/ss2017.1.37-45

Abstract

Objective. To analyze the characteristics of the stress-strain state of the cervical spine when replacing vertebral body with implants of different design.

Material and Methods. Mathematical modeling was performed by developing three finite element models of the cervical spine. The models simulated human cervical spine within C3-C7 spinal segment. The C5 vertebra was replaced by three different systems: mesh cage, mesh cage combined with anterior plate, and telescopic vertebral body replacement implant fixed to the bodies. The stress-strain state of models was studied under four variants of loading: compression, flexion, extension, and rotary impact.

Results. Stress intensity values were obtained for the following structures: top of the vertebral body, bottom of the vertebral body, pedicle, lamina, joint masses, teeth and screws (if any) of instrumentation under different loading options.

Conclusion. The presence of an additional fixation to vertebral bodies allows reducing the level of maximum stress in the bone tissue of vertebrae contacting the implant. Telescopic cage shows the lowest level of stress in the model elements under compression and flexion. Stress indicators in extension and rotation have minor differences between different sites. 

About the Authors

Aleksey Sergeyevich Nekhlopochin
Lugansk Regional Clinical Hospital; Lugansk State Medical University
Russian Federation


Sergey Nikolayevich Nekhlopochin
Lugansk Regional Clinical Hospital; Lugansk State Medical University
Russian Federation


Mikhail Yuryevich Karpinsky
Sytenko Institute of Spine and Joint Pathology
Russian Federation


Aleksey Ivanovich Shvets
Lugansk State Medical University
Russian Federation


Elena Dmitryevna Karpinskaya
Sytenko Institute of Spine and Joint Pathology
Russian Federation


Alexandr Vasilyevich Yaresko
Sytenko Institute of Spine and Joint Pathology
Russian Federation


References

1. Алямовский А.А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М., 2004.

2. Березовский В.А., Колотилов Н.Н. Биофизические характеристики тканей человека: Справочник. Киев, 1990.

3. Зенкевич О. Метод конечных элементов в технике. М., 1975.

4. Нехлопочин А.С. Телозамещающие эндопротезы для переднего спондилодеза: Обзор литературы // Хирургия позвоночника. 2015. Т. 12. № 2. С. 20-24. DOI:10.14531/ss2015.2.20-24.

5. Нехлопочин А.С., Швец А.И., Нехлопочин С.Н. Телозамещающий телескопический эндопротез для субаксиального цервикоспондилодеза // Вопросы нейрохирургии им. Н.Н. Бурденко. 2016. Т. 80. № 1. С. 19-26. DOI:10.17116/neiro201680119-26.

6. Радченко В.А., Шимон В.М., Ткачук Н.А., Шманько А.П. Конечно-элементные модели для определения жесткости и прочности имплантатов из гидроксилапатитной керамики // Ортопедия, травматология и протезирование. 2002. № 3. С. 60-64.

7. Філіпенко В.А., Мітелева З.М., Зиман З.З., Мезенцев В.О., Яресько О.В. Метод кінцевих елементів у клінічній біомеханіці та прогнозування результатів пластики кісткових порожнини за допомогою різновидів кальцій-фосфатних керамік // Ортопедия, травматология и протезирование. 2006. № 2. С. 34-41.

8. Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VK, Papadopoulos SM, Crawford NR. Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine. 2005;30:915-922. DOI: 10.1097/01.brs.0000158949.37281.d7.

9. Gilbertson LG, Goel VK, Kong WZ, Clausen JD. Finite element methods in spine biomechanics research. Crit Rev Biomed Eng. 1995;23:411-473. DOI: 10.1615/CritRevBiomedEng.v23.i5-6.20.

10. Goel VK, Gilbertson LG. Applications of the finite element method to thoracolumbar spinal research - past, present, and future. Spine. 1995;20:1719-1727.

11. Graham RS, Oberlander EK, Stewart JE, Griffiths DJ. Validation and use of a finite element model of C-2 for determination of stress and fracture patterns of anterior odontoid loads. J Neurosurg. 2000;93(1 Suppl):117-125.

12. Hart R, Gillard J, Prem S, Shea M, Kitchel S. Comparison of stiffness and failure load of two cervical spine fixation techniques in an in vitro human model. J Spinal Disord Tech. 2005;18 Suppl:S115-S118. DOI: 10.1097/01.bsd.0000132288.65702.6e.

13. Kandziora F, Pflugmacher R, Schefer J, Born C, Duda G, Haas NP, Mittlmeier T. Biomechanical comparison of cervical spine interbody fusion cages. Spine. 2001;26:1850-1857. DOI: 10.1097/00007632-200109010-00007.

14. Kim SB, Bak KH, Cheong JH, Kim JM, Kim CH, Oh SH. Biomechanical testing of anterior cervical spine implants: evaluation of changes in strength characteristics and metal fatigue resulting from minimal bending and cyclic loading. J Korean Neurosurg Soc. 2005;37:217-222.

15. Kumaresan S, Yoganandan N, Pintar FA. Finite element analysis of anterior cervical spine interbody fusion. Biomed Mater Eng. 1997;7:221-230.

16. Maiman DJ, Kumaresan S, Yoganandan N, Pintar FA. Biomechanical effect of anterior cervical spine fusion on adjacent segments. Biomed Mater Eng. 1999;9:27-38.

17. Natarajan RN, Chen BH, An HS, Andersson GB. Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis. Spine. 2000;25:955-961.

18. Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading. J Spinal Disord. 2001;14:201-210. DOI: 10.1097/00002517-200106000-00003.

19. Panjabi MM. Cervical Spine Models for Biomechanical Research. Spine. 1998;23:2699-2700. DOI: 10.1097/00007632-199812150-00008.

20. Pitzen TR, Matthis D, Barbier DD, Steudel WI. Initial stability of cervical spine fixation: predictive value of a finite element model. Technical note. J Neurosurg. 2002;97(1 Suppl):128-134. DOI: 10.3171/spi.2002.97.1.0128.

21. Rapoff AJ, O’Brien TJ, Ghanayem AJ, Heisey DM, Zdeblick TA. Anterior cervical graft and plate load sharing. J Spinal Disord. 1999;12:45-49. DOI: 10.1097/00002517-199902000-00007.

22. Teo EC, Yang K, Fuss FK, Lee KK, Qiu TX, Ng HW. Effects of cervical cages on load distribution of cancellous core: a finite element analysis. J Spinal Disord Tech. 2004;17:226-231. DOI: 10.1097/00024720-200406000-00010.

23. Yoganandan N, Kumaresan SC, Voo L, Pintar FA, Larson SJ. Finite element modeling of the C4-C6 cervical spine unit. Med Eng Phys. 1996;18:569-574. DOI: 10.1016/1350-4533(96)00013-6.

24. Yoganandan N, Kumaresan S, Voo L, Pintar FA. Finite element applications in human cervical spine modeling. Spine. 1996;21:1824-1834.

25. Yoganandan N, Myklebust JB, Ray G, Sances A Jr. Mathematical and finite element analysis of spine injuries. Crit Rev Biomed Eng. 1987;15:29-93.


Review

For citations:


Nekhlopochin A.S., Nekhlopochin S.N., Karpinsky M.Yu., Shvets A.I., Karpinskaya E.D., Yaresko A.V. MATHEMATICAL ANALYSIS AND OPTIMIZATION OF DESIGN CHARACTERISTICS OF STABILIZING VERTEBRAL BODY REPLACING SYSTEMS FOR SUBAXIAL CERVICAL FUSION USING THE FINITE ELEMENT METHOD. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2017;14(1):37-45. https://doi.org/10.14531/ss2017.1.37-45



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)