Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

Dynamics of independence and locomotor capabilities caused by powered exoskeleton-induced walk training in patients with severe chronic spinal cord injury

https://doi.org/10.14531/ss2020.4.54-67

Abstract

Objective. To evaluate the effectiveness of complex rehabilitation with walk training induced by powered exoskeleton ‘ExoAtlet’ for the patients with severe chronic paraplegias caused by thoracic or upper lumbar spine injuries.

Material and Methods. Design: prospective monocenter study. Fifty patients with severe  spinal cord injuries (ASIA: A – 36, B – 10, C – 4; Frankel: A – 24, B – 16, C – 10) from  6 months to 23 years after complicated thoracic or upper lumbar spine injury underwent two intensive courses of complex neurorehabilitation including 36 sessions/hours of powered exoskeleton-induced walk training. Three areas mostly important for the patients were chosen for the analysis: changes in patient independence (assessed by the SCIM III scale), locomotor capabilities (Hauser’s Ambulation Index and tetrapedal tests), and strength and sensitivity indicators (AIS scales). Testing was carried out before and one month after the end of the second course. The frequency of positive changes in each area and their dependence (ANOVA) on the completeness of the spinal cord injury and the duration of the injury were studied.

Results. The increase in independence was observed in 46/50 patients, including by 1–3 SCIM points in 14 (28 %), by 4–9 points in 20 (40 %), and by 10 points and above in 12 patients (24 %). Locomotor capabilities improved in 84 % of patients due to reducing test execution time and the need for care. Progress in sensitivity below the affected area by at least 1 point was detected in 80 % of patients (on average by 6 AIS points), including in 68% in tactile and in 54 % in pain sensitivity. The muscle strength gain was recorded in 7 (14%) patients with incomplete paraplegia (on average by 3.5 AIS points). Within the study group, it was found that the progress achieved in independence, locomotor capabilities and sensitivity did not depend on the completeness of the spinal cord injury as well as on the period after injury.

Conclusion. Rehabilitation with repeated intensive courses of powered exoskeleton-induced walk training increases independence, expands locomotor capabilities and improves sensitivity below the affected area in most patients with complete and incomplete spinal cord injury at different periods after injury.

About the Authors

E. Yu. Shapkova
St. Petersburg Research Institute of Phthisiopulmonology; Saint Petersburg State University
Russian Federation

Elena Yuryevna Shapkova, PhD in Biology, leading researcher, head of neurorehabilitation area, Laboratory of Neurophysiology and Technologies for Neurorehabilitation, Centre for Spinal Patholog ; leading researcher, Laboratory of Neuroprostheses, Institute of Translational Biomedicine

32 Politekhnicheskaya str., St. Petersburg, 194064, Russia;

7–9 Universitetskaya naberezhnaya, St. Petersburg, 199034, Russia



D. V. Emelyannikov
St. Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Dmitry Vladimirovich Emelyannikov, researcher, Laboratory of Neurophysiology and Technologies for Neurorehabilitation, Centre for Spinal Pathology

32 Politekhnicheskaya str., St. Petersburg, 194064, Russia



Yu. E. Larionova
St.Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Yulia Evgenyevna Larionova, researcher, Laboratory of Neurophysiology and Technologies for Neurorehabilitation, Centre for Spinal Pathology

32 Politekhnicheskaya str., St. Petersburg, 194064, Russia



N. A. Kupreev
St. Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Nikita Aleksanrovich Kupreev, junior researcher, Laboratory of Neurophysiology and Technologies for Neurorehabilitation, Centre for Spinal Pathology

32 Politekhnicheskaya str., St. Petersburg, 194064, Russia



E. V. Grigoreva
St. Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Ekaterina Vjacheslavovna Grigoreva, junior researcher, Laboratory of Neurophysiology and Technologies for Neurorehabilitation, Centre for Spinal Pathology

32 Politekhnicheskaya str., St. Petersburg, 194064, Russia



References

1. Всемирная организация здравоохранения: сайт. [World Health Organization: website]. URL: https://www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/ru.

2. Даминов В.Д., Ткаченко П.В. Экзоскелеты в медицине: мировой опыт и клиническая практика Пироговского центра // Вестник национального медико-хирургического Центра им. Н.И. Пирогова. 2017. Т. 12. № 4. Ч. 2. С. 17–22. [Daminov VD, Tkachenko PV. Exoskeletons in medicine: world experience and clinical practice of the Pyrogov center. Bulletin of Pirogov National Medical and Surgical Center. 2017;12(4).Pt 2:17–22. In Russian].

3. Nam KY, Kim HJ, Kwon BS, Park JW, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14:24. DOI:0.1186/s12984-017-0232-3.

4. Del-Ama AJ, Koutsou AD, Moreno JC, De-los-Reyes A, Gil-Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49:497–514. DOI: 10.1682/jrrd.2011.03.0043.

5. Onose G, Cardei V, Craciunoiu ŞT, Avramescu V, Opris I, Lebedev MA, Costantinescu MV. Mechatronic wearable exoskeletons for bionic bipedal standing and walking: a new synthetic approach. Front Neurosci. 2016;10:343. DOI: 10.3389/fnins.2016.00343.

6. Sylos-Labini F, La Scaleia F, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, van der Kooij H, Hoellinger T, Cheron G, Thorsteinsson F, Ilzkovitz M, Gancet J, Hauffe R, Zanov F, Lacquaniti F, Ivanenko YP. EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci. 2014;8:423. DOI: 10.3389/fnhum.2014.00423.

7. Mekki M, Delgado AD, Fry A, Putrino D, Huang V. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics. 2018;15:604–617. DOI: 10.1007/s13311-018-0642-3.

8. Sanchez-Villamanan MDC, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil. 2019;16:55. DOI: 10.1186/s12984-019-0517-9.

9. Bao G, Pan L, Fang H, Wu X, Yu H, Cai S, Bingqing Y, Wan Y. Academic review and perspectives on robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng. 2019;27:2294–2304. DOI: 10.1109/TNSRE.2019.2944655.

10. Shi D, Zhang W, Zhang W, Ding X. A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng. 2019;32:74. DOI: 10.1186/s10033-019-0389-8.

11. He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017;10:89–107. DOI: 10.2147/MDER.S107134.

12. Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015;21:110–121. DOI: 10.1310/sci2102-110.

13. Lebedev MA. Augmentation of sensorimotor functions with neural prostheses. Opera Med Physiol. 2016;2(3-4):211–227. DOI: 10.20388/ OMP.003.0035.

14. Fisahn C, Aach M, Jansen O, Moisi M, Mayadev A, Pagarigan KT, Dettori JR, Schildhauer TA. The effectiveness and safety of exoskeletons as assistive and rehabilitation devices in the treatment of neurologic gait disorders in patients with spinal cord injury: a systematic review. Global Spine J. 2016;6:822–841. DOI: 10.1055/s-0036-1593805.

15. Contreras-Vidal JL, Bhagat NA, Brantley J, Cruz-Garza JG, He Y, Manley Q, Nakagome S, Nathan K, Tan SH, Zhu F, Pons JL. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016;13:031001. DOI: 10.1088/1741-2560/13/3/031001.

16. Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017;55:722–729. DOI: 10.1038/sc.2017.31.

17. Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, Fox EJ, Fritz NE, Hawkins K, Henderson CE, Hendron KL, Holleran CL, Lynskey JE, Walter A. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 2020;44:

18. –100. DOI: 10.1097/NPT.0000000000000303.

19. Gorgey AS. Robotic exoskeletons: the current pros and cons. World J Orthop. 2018;9:112–119. DOI: 10.5312/wjo.v9.i9.112.

20. Hauser SL, Dawson DM, Lehrich JR, Beal MF, Kevy SV, Propper RD, Mills JA, Weiner HL. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med. 1983;308:173–180. DOI: 10.1056/NEJM198301273080401.

21. American Spinal Injury Association. Standards for Neurological Classification of Spinal Injury Patients. Chicago, IL: American Spinal Injury Association. 1982. [Electronic resource]. URL: https://asia-spinalinjury.org/international-standards-neurological-classification-sci-isncsci-worksheet.

22. Григорьева Е.В., Ларионова Ю.Е., Емельянников Д.В., Шапкова Е.Ю. Оценка динамики локомоторных возможностей пациентов с плегиями при тренировках ходьбы в экзоскелете «ЭкзоАтлет» // Новые подходы к изучению классических проблем: Материалы IX Всероссийской с международным участием конференции с элементами научной школы по физиологии мышц и мышечной деятельности, посвященной памяти Е.Е. Никольского. 2019. С. 45. [Grigorieva EV, Larionova YuE, Emeliannikov DV, Shapkova EYu. Dynamic assessment of locomotor capabilities of patients with plegias during gait training in the exoskeleton “Exoathlet”. New Approaches to Classical Problems: Materials of the 9th All-Russian Conference dedicated to the memory of E.E. Nikolsky. 2019:45. In Russian].

23. Ларионова Ю.Е., Купреев Н.А., Григорьева Е.В., Емельянников Д.В., Шапкова Е.Ю. Динамика локомоторных возможностей пациентов с плегиями при тренировках ходьбы в экзоскелете // Управление движением Motor Control 2020: Материалы VIII Российской с международным участием конференции по управлению движением. Петрозаводск, 2020. С. 76–77. [Larionova YuE, Kupreev NA, Grigorieva EV, Emeliannikov DV, Shapkova EYu. Dynamics of locomotor capabilities of patients with plegias during gait training in an exoskeleton. Motor Control 2020: Materials of 8th All-Russian Conference. Petrozavodsk, 2020:76–77. In Russian].

24. Коновалов А.Н., Лихтерман Л.Б, Потапов А.А. Нейротравматология. М., 1994. [Konovalov AN, Likhterman LB, Potapov AA. Neurotraumatology. Moscow, 1994. In Russian].

25. Амелина О.А. Травма спинного мозга // Клиническая неврология с основами медико-социальной экспертизы: под ред. А.Ю. Макарова. СПб., 1998. С. 232–248. [Amelina OA. Spinal cord injury. In: Clinical Neurology with the Basics of Medical and Social Expertise, ed. by A.Yu. Makarov. St. Petersburg. 1998:232–248. In Russian].

26. Schuld C, Franz S, Bruggemann K, Heutehaus L, Weidner N, Kirshblum SC, Rupp R. International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance. J Spinal Cord Med. 2016;39:504–512. DOI: 10.1080/10790268.2016.1180831.

27. Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH, Vernon JD, Walsh JJ. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia. 1969;7:179–192. DOI: 10.1038/sc.1969.30.

28. Spinal Cord Independency Measure – SCIM III. [Electronic resource]. URL: https://docplayer.ru/68086380-Izmeritel-nezavisimosti-pri-povrezhdeniyah-spinnogo-mozga-scim-iii-spinal-cord-independence-measure-iii.html.

29. Anderson KD, Acuff ME, Arp BG, Backus D, Chun S, Fisher K, Fjerstad JE, Graves D, Greenwald K, Groah S, Harkema SJ, Horton JA, Huang MN, Jennings M, Kelley KS, Kessler SM, Kirshblum S, Koltenuk S, Linke M, Ljungberg I, Nagy J, Nicolini L, Roach MJ, Salles S, Scelza WM, Read MS, Reeves RK, Scott MD, Tansey KE, Theis JL, Tolfo CZ, Whitney M, Williams CD, Winter CM, Zanca JM. United States (US) multi-center study to assess the validity and reliability of the Spinal Cord Independence Measure (SCIM III). Spinal Cord. 2011;49:880–885. DOI: 10.1038/sc.2011.20.

30. Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC, Tonack M, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergstrom EM, Bluvshtein V, Ronen J. A multicenter international study on the Spinal Cord Independence Measure, version III: Rasch psychometric validation. Spinal Cord. 2007;45:275–291. DOI: 10.1038/sj.sc.3101960.

31. Pais-Vieira C, Allahdad M, Neves-Amado J, Perrotta A, Morya E, Moioli R, Shapkova E, Pais-Vieira M. Method for positioning and rehabilitation training with the ExoAtlet ® powered exoskeleton. MethodsX. 2020;7:100849. DOI: 10.1016/j.mex.2020.100849.

32. Григорьев А.И., Козловская И.Б., Шенкман Б.С. Роль опорной афферентации в организации тонической мышечной системы // Российский физиологический журнал им. И.М. Сеченова. 2004. Т. 90. № 5. С. 508–521. [Grigor’ev AI, Kozlovskaia IB, Shenkman BS. The role of support afferents in organization of the tonic muscular system. Ross Fiziol Zh Im I M Sechenova. 2004;90(5):508–521. In Russian].

33. Прудникова О.Г., Качесова А.А., Рябых С.О. Реабилитация пациентов в отдаленном периоде травмы спинного мозга: метаанализ литературных данных // Хирургия позвоночника. 2019. Т. 16. № 3. С. 8–16. [Prudnikova OG, Kachesova AA, Ryabykh SO. Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data. Hir. Pozvonoc. 2019;16(3):8–16. In Russian]. DOI: 10.14531/ss2019.3.8-16.

34. Guan X, Kuai S, Ji L, Wang R, Ji R. Trunk muscle activity patterns and motion patterns of patients with motor complete spinal cord injury at T8 and T10 walking with different un-powered exoskeletons. J Spinal Cord Med. 2017;40:463–470. DOI: 10.1080/10790268.2017.1319033.

35. Кастальский И.А., Хоружко М.А., Скворцов Д.В. Система функциональной электрической стимуляции мышц для интеграции в экзоскелете // Современные технологии в медицине. 2018. Т. 10. № 3. С. 104–109. [Kastalskiy IA, Khoruzhko MA, Skvortsov DV. A functional electrical stimulation system for integration in an exoskeleton. Sovremennye technologii v medicine. 2018;10(3):104–109. In Russian]. DOI: 10.17691/stm2018.10.3.12.

36. Ekelem A, Goldfarb M. Supplemental stimulation improves swing phase kinematics during exoskeleton assisted gait of SCI subjects with severe muscle spasticity. Front Neurosci. 2018;12:374. DOI: 10.3389/fnins.2018.00374.

37. Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24:1677–1682. DOI: 10.1038/s41591-018-0175-7.

38. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberie G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. DOI: 10.1038/s41586-018-0649-2.

39. Gorgey AS, Gill S, Holman ME, Davis JC, Atri R, Bai O, Goetz L, Lester DL, Trainer R, Lavis TD. The feasibility of using exoskeletal-assisted walking with epidural stimulation: a case report study. Ann Clin Transl Neurol. 2020;7:259–265. DOI: 10.1002/acn3.50983.

40. Shapkova EY, Pismennaya EV, Emelyannikov DV, Ivanenko Y. Exoskeleton walk training in paralyzed individuals benefits from transcutaneous lumbar cord tonic electrical stimulation. Front Neurosci. 2020;14:416. DOI: 10.3389/fnins.2020.00416.

41. Van Middendorp JJ, Hosman AJ, Pouw MH, van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2008;47:555–560. DOI: 10.1038/sc.2008.162.

42. Schulte LM, Scully RD, Kappa JE. Management of lower extremity long-bone fractures in spinal cord injury patients. J Am Acad Orthop Surg. 2017;25:e204–e213. DOI: 10.5435/JAAOS-D-15-00686.


Supplementary files

1. Приложение 1
Subject
Type Результаты исследования
Download (204KB)    
Indexing metadata ▾
2. Приложение 2
Subject
Type Результаты исследования
Download (120MB)    
Indexing metadata ▾

Review

For citations:


Shapkova E.Yu., Emelyannikov D.V., Larionova Yu.E., Kupreev N.A., Grigoreva E.V. Dynamics of independence and locomotor capabilities caused by powered exoskeleton-induced walk training in patients with severe chronic spinal cord injury. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2020;17(4):54-67. https://doi.org/10.14531/ss2020.4.54-67



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)