Preview

Хирургия позвоночника

Расширенный поиск

Идиопатический сколиоз как мультифакторное заболевание: систематизированный обзор современной литературы

https://doi.org/10.14531/ss2022.2.19-32

Аннотация

Цель исследования. Анализ современной литературы по вопросам этиологии и развития идиопатического сколиоза.
Материал и методы. В анализ включены исследования, посвященные этиологическим факторам идиопатического сколиоза. Поиск осуществлен по базам eLibrary, PubMed, Google Scholar. В обзор включены исследовательские и экспериментальные работы, а также систематические обзоры и метаанализы. Критерий исключения – теоретические работы без практического исследования/эксперимента для подтверждения теории. Глубина анализа – 30 лет.
Результаты. Из 456 работ по теме исследования отобраны 153, отвечающие критериям включения/исключения. Выделены основные теории возникновения идиопатического сколиоза: генетическая, нейрогенная, теория дефекта костной и мышечной тканей,
биомеханическая, гормональная, биохимическая, эволюционная, теория влияния окружающей среды и образа жизни.
Заключение. Термин «идиопатический сколиоз» объединяет ряд заболеваний с различными этиопатогенетическими механизмами развития. Идиопатический сколиоз имеет полигенное наследование. За его возникновение в разных популяциях ответственны различные гены, а механизмы прогрессирования запускаются разными эпигенетическими факторами. Дефекты костной и мышечной тканей, патология центральной нервной системы, нарушение биомеханики, гормональные и биохимические отклонения в некоторых случаях могут иметь значимую роль.

Об авторах

А. П. Горбач
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

аспирант



О. М. Сергеенко
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

канд. мед. наук, врач-травматолог-ортопед, врач-нейрохирург, заведующая лабораторией клиники патологии позвоночника и редких заболеваний



Е. Н. Щурова
Национальный медицинский исследовательский центр травматологии и ортопедии им. акад. Г.А. Илизарова Россия, 640014, Курган, ул. М. Ульяновой, 6
Россия

д-р биол. наук, ведущий научный сотрудник научной лаборатории клиники патологии позвоночника и редких заболеваний



Список литературы

1. Giampietro PF, Pourquie O, Raggio C, Ikegawa S, Turnpenny PD, Gray R, Dunwoodie SL, Gurnett CA, Alman B, Cheung K, Kusumi K, Hadley-Miller N, Wise CA. Summary of the first inaugural joint meeting of the International Consortium for scoliosis genetics and the International Consortium for vertebral anomalies and scoliosis, March 16–18, 2017. Dallas, Texas. Am J Med Genet A. 2018;176:253–256. DOI: 10.1002/ajmg.a.38550.

2. Hengwei F, Zifang H, Qifei W, Weiqing T, Nali D, Ping Y, Junlin Y. Prevalence of idiopathic scoliosis in chinese schoolchildren: a large, population-based study. Spine. 2016;41:259–264. DOI: 10.1097/brs.0000000000001197.

3. Balsano M, Negri S. Natural course and classification of idiopathic scoliosis. In: Spine Surgery, ed. by B. Meyer, M.Rauschmann. Springer, Cham. 2019:141–148. DOI: 10.1007/978-3-319-98875-7_19.

4. Trobisch P, Suess O, Schwab F. Idiopathic scoliosis. Dtsch Arztebl Int. 2010;107:875–883. DOI: 10.3238/arztebl.2010.0875.

5. Ogura Y, Matsumoto M, Ikegawa S, Watanabe K. Epigenetics for curve progression of adolescent idiopathic scoliosis. EBioMedicine. 2018;37:36–37. DOI: 10.1016/j.ebiom.2018.10.015.

6. Gao A, Li JY, Shao R, Wu TX, Wang YQ, Liu XG, Yu M. Schroth exercises improve health-related quality of life and radiographic parameters in adolescent idiopathic scoliosis patients. Chin Med J (Engl). 2021;134:2589–2596. DOI: 10.1097/cm9.0000000000001799.

7. Latalski M, Danielewicz-Bromberek A, Fatyga M, Latalska M, Krober M, Zwolak P. Current insights into the aetiology of adolescent idiopathic scoliosis. Arch Orthop Trauma Surg. 2017;137:1327–1333. DOI: 10.1007/s00402-017-2756-1.

8. Galton F. The history of twins, as a criterion of the relative powers of nature and nurture. Fraser’s Magazine. 1875;12:566–576.

9. Simony A, Carreon LY, Jmark KH, Kyvik KO, Andersen MO. Concordance rates of adolescent idiopathic scoliosis in a Danish twin population. Spine. 2016;41:1503–1507. DOI: 10.1097/BRS.0000000000001681.

10. Ogilvie JW, Braun J, Argyle V, Nelson L, Meade M, Ward K. The search for idiopathic scoliosis genes. Spine. 2006;31:679–681. DOI: 10.1097/01.brs.0000202527.25356.90.

11. Dausset J, Cann H, Cohen D, Lathrop M, Lalouel JM, White R. Centre d’etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics. 1990;6:575–577. DOI: 10.1016/0888-7543(90)90491-c.

12. Justice CM, Miller NH, Marosy B, Zhang J, Wilson AF. Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine. 2003;28:589–594. DOI: 10.1097/01.BRS.0000049940.39801.E6.

13. Ward K, Ogilvie J, Argyle V, Nelson L, Meade M, Braun J, Chettier R. Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am J Med Genet A. 2010;152:1178–1188. DOI: 10.1002/ajmg.a.33145.

14. Gao W, Chen C, Zhou T, Yang S, Gao B, Zhou H, Lian C, Wu Z, Qiu X, Yang X, Alattar E, Liu W, Su D, Sun S, Chen Y, Cheung KMC, Song Y, Luk KKD, Chan D, Sham PC, Xing C, Khor CC, Liu G, Yang J, Deng Y, Hao D, Huang D, Li QZ, Xu C, Su P. Rare coding variants in MAPK7 predispose to adolescent idiopathic scoliosis. Hum Mutat. 2017;38:1500–1510. DOI: 10.1002/humu.23296.

15. Sadat-Ali M, Al-Omran AS, Al-Othman AA. Genetic markers for idiopathic scoliosis on chromosome 19p 13.3 among Saudi Arabian girls: a pilot study. Indian J Hum Genet. 2011;17:13–16. DOI: 10.4103/0971-6866.82187.

16. Ogura Y, Kou I, Matsumoto M, Watanabe K, Ikegawa S. [Genome-wide association study for adolescent idiopathic scoliosis]. Clin Calcium. 2016;26:553–560.

17. Zhang H, Zhao S, Zhao Z, Tang L, Guo Q, Liu S, Chen L. The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysis. Mol Biol Rep. 2014;41:2543–2549. DOI: 10.1007/s11033-014-3112-y.

18. Zhao L, Roffey DM, Chen S. Association between the estrogen receptor beta (ESR2) rs1256120 single nucleotide polymorphism and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Spine. 2017;42:871–878. DOI: 10.1097/brs.0000000000001932.

19. Morocz M, Czibula A, Grozer ZB, Szecsenyi A, Almos PZ, Rasko I, Illes T. Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine. 2011;36:E123–E130. DOI: 10.1097/BRS.0b013e318a511b0e.

20. Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH, Wang H. Association of calmodulin1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Orthop Surg. 2009;1:58–65. DOI: 10.1111/j.1757-7861.2008.00011.x.

21. Xia CW, Qiu Y, Sun X, Qiu XS, Wang SF, Zhu ZZ, Zhu F. [Vitamin D receptor gene polymorphisms in female adolescent idiopathic scoliosis patients]. Zhonghua Yi Xue Za Zhi. 2007;87:1465–1469.

22. Li J, Yang Z, Yu M. Association study of single nucleotide polymorphism in tryptophan hydroxylase 1 gene with adolescent idiopathic scoliosis: A meta-analysis. Medicine (Baltimore). 2021;100:e23733. DOI: 10.1097/md.0000000000023733.

23. Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23:5271–5282. DOI: 10.1093/hmg/ddu224.

24. Liu B, Zhao S, Liu L, Du H, Zhao H, Wang S, Niu Y, Li X, Qiu G, Wu Z, Zhang TJ, Wu N. Aberrant interaction between mutated ADAMTSL2 and LTBP4 is associated with adolescent idiopathic scoliosis. Gene. 2022;814:146126. DOI: 10.1016/j.gene.2021.146126.

25. Xu E, Shao W, Jiang H, Lin T, Gao R, Zhou X. A genetic variant in GPR126 causing a decreased inclusion of exon 6 is associated with cartilage development in adolescent idiopathic scoliosis population. Biomed Res Int. 2019;2019:4678969. DOI: 10.1155/2019/4678969.

26. Liu G, Liu S, Li X, Chen J, Chen W, Zuo Y, Liu J, Niu Y, Lin M, Zhao S, Long B, Zhao Y, Ye Y, Zhang J, Shen J, Qiu G, Wu Z, Wu N. Genetic polymorphisms of PAX1 are functionally associated with different PUMC types of adolescent idiopathic scoliosis in a northern Chinese Han population. Gene. 2019;688:215–220. DOI: 10.1016/j.gene.2018.12.013.

27. Nikolova S, Dikova M, Dikov D, Djerov A, Savov A, Kremensky I, Loukanov A. Positive association between TGFB1 gene and susceptibility to idiopathic scoliosis in Bulgarian population. Anal Cell Pathol (Amst). 2018;2018:6836092. DOI: 10.1155/2018/6836092.

28. Mao S, Xu L, Zhu Z, Qian B, Qiao J, Yi L, Qiu Y. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis. Spine. 2013;38:1034–1039. DOI: 10.1097/BRS.0b013e318287fcfd.

29. Zhou S, Qiu XS, Zhu ZZ, Wu WF, Liu Z, Qiu Y. A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord. 2012;13:181. DOI: 10.1186/1471-2474-13-181.

30. Hassan A, Parent S, Mathieu H, Zaouter C, Molidperee S, Bagu ET, Barchi S, Villemure I, Patten SA, Moldovan F. Adolescent idiopathic scoliosis associated POC5 mutation impairs cell cycle, cilia length and centrosome protein interactions. PLoS One. 2019;14:e0213269. DOI: 10.1371/journal.pone.0213269.

31. Xu L, Xia C, Sun W, Qin X, Qiu Y, Zhu Z. Genetic polymorphism of NUCKS1 is associated with the susceptibility of adolescent idiopathic scoliosis. Spine. 2017;42:1629–1634. DOI: 10.1097/brs.0000000000002167.

32. Fadzan M, Bettany-Saltikov J. Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J. 2017;11:1466–1489. DOI: 10.2174/1874325001711011466.

33. Fendri K, Patten SA, Kaufman GN, Zaouter C, Parent S, Grimard G, Edery P, Moldovan F. Microarray expression profiling identifies genes with altered expression in Adolescent Idiopathic Scoliosis. Eur Spine J. 2013;22:1300–1311. DOI: 10.1007/s00586-013-2728-2.

34. Burwell RG, Dangerfield PH, Moulton A, Grivas TB. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis. 2011;6:26. DOI: 10.1186/1748-7161-6-26.

35. Mao SH, Qian BP, Shi B, Zhu ZZ, Qiu Y. Quantitative evaluation of the relationship between COMP promoter methylation and the susceptibility and curve progression of adolescent idiopathic scoliosis. Eur Spine J. 2018;27:272–277. DOI: 10.1007/s00586-017-5309-y.

36. Meng Y, Lin T, Liang S, Gao R, Jiang H, Shao W, Yang F, Zhou X. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018;36:489–496. DOI: 10.1016/j.ebiom.2018.09.014.

37. Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, Sharma S, Su P, Huang D. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to Leptin in Adolescent Idiopathic Scoliosis. PLoS One. 2012;7:e36648. DOI: 10.1371/journal.pone.0036648.

38. Park WW, Suh KT, Kim JI, Kim SJ, Lee JS. Decreased osteogenic differentiation of mesenchymal stem cells and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18:1920–1926. DOI: 10.1007/s00586-009-1129-z.

39. Tahvildari BP, Erfani MA, Nouraei H, Sadeghian M. Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg. 2014;6:180–184. DOI: 10.4055/cios.2014.6.2.180.

40. Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15:1587–1595. DOI: 10.1359/jbmr.2000.15.8.1587.

41. Zhuang Q, Li J, Wu Z, Zhang J, Sun W, Li T, Yan Y, Jiang Y, Zhao RC, Qui G. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. PLoS One. 2011;6:e18834. DOI: 10.1371/journal.pone.0018834.

42. Zhuang Q, Mao W, Xu P, Li H, Sun Z, Li S, Qiu G, Li J, Zhang J. Identification of differential genes expression profiles and pathways of bone marrow mesenchymal stem cells of adolescent idiopathic scoliosis patients by microarray and integrated gene network analysis. Spine. 2016;41:840–855. DOI: 10.1097/BRS.0000000000001394.

43. Chen C, Xu C, Zhou T, Gao B, Zhou H, Chen C, Zhang C, Huang D, Su P. Abnormal osteogenic and chondrogenic differentiation of human mesenchymal stem cells from patients with adolescent idiopathic scoliosis in response to melatonin. Mol Med Rep. 2016;14:1201–1209. DOI: 10.3892/mmr.2016.5384.

44. Wang Q, Yang J, Lin X, Huang Z, Xie C, Fan H. Spot14/Spot14R expression may be involved in MSC adipogenic differentiation in patients with adolescent idiopathic scoliosis. Mol Med Rep. 2016;13:4636–4642. DOI: 10.3892/mmr.2016.5109.

45. Zhou T, Chen C, Xu C, Zhou H, Gao B, Su D, Liao Z, Li Y, Yang S, Su P. Mutant MAPK7-induced idiopathic scoliosis is linked to impaired osteogenesis. Cell Physiol Biochem. 2018;48:880–890. DOI: 10.1159/000491956.

46. Xu E, Lin T, Jiang H, Ji Z, Shao W, Meng Y, Gao R, Zhou X. Asymmetric expression of GPR126 in the convex/concave side of the spine is associated with spinal skeletal malformation in adolescent idiopathic scoliosis population. Eur Spine J. 2019;28:1977–1986. DOI: 10.1007/s00586-019-06001-5.

47. Zhuang Q, Ye B, Hui S, Du Y, Zhao RC, Li J, Wu Z, Li N, Zhang Y, Li H, Wang S, Yang Y, Li S, Zhao H, Fan Z, Qiu G, Zhang J. Long noncoding RNA lncAIS downregulation in mesenchymal stem cells is implicated in the pathogenesis of adolescent idiopathic scoliosis. Cell Death Differ. 2019;26:1700–1715. DOI: 10.1038/s41418-018-0240-2.

48. Hui S, Yang Y, Li J, Li N, Xu P, Li H, Zhang Y, Wang S, Lin G, Li S, Qiu G, Zhao RC, Zhang J, Zhuang Q. Differential miRNAs profile and bioinformatics analyses in bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. Spine J. 2019;19:1584–1596. DOI: 10.1016/j.spinee.2019.05.003.

49. Shi L, Wang D, Chu WC, Burwell RG, Freeman BJ, Heng PA, Cheng JC. Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects. AJNR Am J Neuroradiol. 2009;30:1302–1307. DOI: 10.3174/ajnr.A1577.

50. Wang D, Shi L, Chu WC, Burwell RG, Cheng JC, Ahuja AT. Abnormal cerebral cortical thinning pattern in adolescent girls with idiopathic scoliosis. Neuroimage. 2012;59:935–942. DOI: 10.1016/j.neuroimage.2011.07.097.

51. Liu T, Chu WC, Young G, Li K, Yeung BH, Guo L, Man GC, Lam WW, Wong ST, Cheng JC. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging. 2008;27:732–736. DOI: 10.1002/jmri.21321.

52. Дудин М.Г., Пинчук Д.Ю., Бекшаев С.С., Святогор И.А., Пинчук О.Д., Бумакова С.А., Павлова В.Б., Рыбка Д.О. К вопросу об этиопатогенезе идиопатического сколиоза // Хирургия позвоночника. 2006. № 4. С. 18–25. [Dudin MG, Pinchuk DYu, Bekshaev SS, Svyatogor IA, Pinchuk OD, Bumakova SA, Pavlova VB, Rybka DO. On etiopathogenesis of idiopathic scoliosis. Hir. Pozvonoc. 2006;(4):18–25]. DOI: 10.14531/ss2006.4.18-25.

53. Geissele AE, Kransdorf MJ, Geyer CA, Jelinek JS, Van Dam BE. Magnetic resonance imaging of the brain stem in adolescent idiopathic scoliosis. Spine. 1991;16:761–763. DOI: 10.1097/00007632-199107000-00013.

54. Chu WC, Man GC, Lam WW, Yeung BH, Chau WW, Ng BK, Lam TP, Lee KM, Cheng JC. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine. 2007;32:1667–1674. DOI: 10.1097/BRS.0b013e318074d539.

55. Lee RK, Griffith JF, Leung JH, Chu WC, Lam TP, Ng BK, Cheng JC. Effect of upright position on tonsillar level in adolescent idiopathic scoliosis. Eur Radiol. 2015;25:2397–2402. DOI: 10.1007/s00330-015-3597-3.

56. Shi L, Wang D, Hui SC, Tong MC, Cheng JC, Chu WC. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls. Spine J. 2013;13:1904–1911. DOI: 10.1016/j.spinee.2013.06.045.

57. Chau WW, Chu WC, Lam TP, Ng BK, Fu LL, Cheng JC. Anatomical origin of abnormal somatosensory-evoked potential (SEP) in adolescent idiopathic scoliosis with different curve severity and correlation with cerebellar tonsillar level determined by MRI. Spine. 2016;41:E598–E604. DOI: 10.1097/brs.0000000000001345.

58. Lee JS, Kim SJ, Suh KT, Kim IJ, Kim YK. Adolescent idiopathic scoliosis may not be associated with brain abnormalities. Acta Radiol. 2009;50:941–946. DOI: 10.1080/02841850903104161.

59. Sun X, Chu WC, Cheng JC, Zhu F, Zhu Z, Yu Y, Wang B, Qiu Y. Do adolescents with a severe idiopathic scoliosis have higher locations of the conus medullaris than healthy adolescents? J Pediatr Orthop. 2008;28:669–673. DOI: 10.1097/BPO.0b013e3181834afa.

60. Chu WC, Lam WW, Chan YL, Ng BK, Lam TP, Lee KM, Guo X, Cheng JC. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2006;31:E19–E25. DOI: 10.1097/01.brs.0000193892.20764.51.

61. Byl NN, Holland S, Jurek A, Hu SS. Postural imbalance and vibratory sensitivity in patients with idiopathic scoliosis: implications for treatment. J Orthop Sports Phys Ther. 1997;26:60–68. DOI: 10.2519/jospt.1997.26.2.60.

62. Lambert FM, Malinvaud D, Glaunes J, Bergot C, Straka H, Vidal PP. Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci. 2009;29:12477–12483. DOI: 10.1523/jneurosci.2583-09.2009.

63. Zeng W, Lui LM, Shi L, Wang D, Chu WC, Cheng JC, Hua J, Yau ST, Gu X. Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Springer, Berlin, Heidelberg, 2010;13(Pt 3):538–546. DOI: 10.1007/978-3-642-15711-0_67.

64. Hitier M, Hamon M, Denise P, Lacoudre J, Thenint MA, Mallet JF, Moreau S, Quarck G. Lateral semicircular canal asymmetry in idiopathic scoliosis: an early link between biomechanical, hormonal and neurosensory theories? PLoS One. 2015;10:e0131120. DOI: 10.1371/journal.pone.0131120.

65. Antoniadou N, Hatzitaki V, Stavridis S, Samoladas E. Verticality perception reveals a vestibular deficit in adolescents with idiopathic scoliosis. Exp Brain Res. 2018;236:1725–1734. DOI: 10.1007/s00221-018-5256-9.

66. Catanzariti JF, Agnani O, Guyot MA, Wlodyka-Demaille S, Khenioui H, Donze C. Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med. 2014;57:465–479. DOI: 10.1016/j.rehab.2014.04.003.

67. Wang ZW, Lee WY, Lam TP, Yip BH, Yu FW, Yu WS, Zhu F, Ng BK, Qiu Y, Cheng JC. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis. Eur Spine J. 2017;26:1586–1594. DOI: 10.1007/s00586-016-4422-7.

68. Burner WL 3rd, Badger VM, Sherman FC. Osteoporosis and acquired back deformities. J Pediatr Orthop. 1982;2:383–385. DOI: 10.1097/01241398-198210000-00006.

69. Hung VWY, Qin L, Cheung CSK, Lam TP, Ng BKW, Tse YK, Guo X, Lee KM, Cheng JCY. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87:2709–2716. DOI: 10.2106/jbjs.D.02782.

70. Sarioglu O, Gezer S, Sarioglu FC, Koremezli N, Kara T, Akcali O, Ozaksoy D, Balci A. Evaluation of vertebral bone mineral density in scoliosis by using quantitative computed tomography. Pol J Radiol. 2019;84:e131–e135. DOI: 10.5114/pjr.2019.84060.

71. Копылов В.С., Потапов В.Э., Горбунов А.В., Сороковиков В.А. Структурные изменения позвоночника при выраженных формах сколиоза // Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской академии медицинских наук. 2011. № 4–1. С. 99–102. [Kopylov VS, Potapov VE, Gorbunov AV, Sorokovikov VA. Structural changes in spine at the apparent forms of scoliosis. Bulletin of the East Siberian Scientific Center SBRAMS. M2011;(4–1):99–102].

72. Хотим О., Сычевский Л., Аносов В. Остеопения как фактор риска развития и прогрессирования сколиоза у детей // Журнал Гродненского государственного медицинского университета. 2017. Т. 15. № 2. С. 176–180. [Khotim O, Sychevsky L, Anosob V. Osteopenia as a risk factor of development and progression of scoliosis in children. Journal of the Grodno State Medical University. 2017;15(2):176–180].

73. Tanabe H, Aota Y, Nakamura N, Saito T. A histomorphometric study of the cancellous spinal process bone in adolescent idiopathic scoliosis. Eur Spine J. 2017;26:1600–1609. DOI: 10.1007/s00586-017-4974-1.

74. Зайдман А.М., Садовой М.А., Строкова Е.Л. Сколиотическая болезнь: 50-летний опыт исследований // Сибирский научный медицинский журнал. 2017. Т. 37. № 6. С. 76–85. [Zaydman AM, Sadovoy MA, Strokova EL. Scoliosis; a 50-year experience of research. Siberian Scientific Medical Journal. 2017;37(6):76–85].

75. Зайдман А.М., Строкова Е.Л., Киселева Е.В., Агеева Т.А., Сульдина Л.А., Струнов А.А., Шевченко А.И. Эктопическая локализация клеток нервного гребня – этиологический фактор сколиотической болезни // Хирургия позвоночника. 2015. Т. 12. № 4. С. 88–97. [Zaidman AM, Strokova EL, Kiselyova EV, Ageeva TA, Suldina LA, Strunov AA, Shevchenko AI. Ectopic localization of neural crest cells: etiological factor of scoliosis. Hir. Pozvonoc. 2015;12(4):88–97]. DOI: 10.14531/ss2015.4.88-97.

76. Wajchenberg M, Martins DE, Luciano RP, Puertas EB, Del Curto D, Schmidt B, Oliveira ABS, Faloppa F. Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: a cross-sectional study. Medicine. 2015;94:e598. DOI: 10.1097/md.0000000000000598.

77. Shchurova E, Filimonova G, Ryabykh S. Magnitude of thoracic spine deformity affecting morphological characteristics of paraspinal muscles in patients with severe idiopathic scoliosis. Genij Ortopedii. 2021;27(1):68–73. DOI: 10.18019/1028-4427-2021-27-1-68-73.

78. Cheung J, Veldhuizen AG, Halberts JP, Sluiter WJ, Van Horn JR. Geometric and electromyographic assessments in the evaluation of curve progression in idiopathic scoliosis. Spine. 2006;31:322–329. DOI: 10.1097/01.brs.0000197155.68983.d8.

79. Chwalła W, Koziana A, Kasperczyk T, Walaszek R, Plaszewski M. Electromyographic assessment of functional symmetry of paraspinal muscles during static exercises in adolescents with idiopathic scoliosis. Biomed Res Int. 2014;2014:573276. DOI: 10.1155/2014/573276.

80. Acaroglu E, Akel I, Alanay A, Yazici M, Marcucio R. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009;34:E659–E663. DOI: 10.1097/BRS.0b013e3181a3c7a2.

81. Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim JS. The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res. 2012;26:1724–1729. DOI: 10.1519/JSC.0b013e318234eb6f.

82. Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23:5271–5282. DOI: 10.1093/hmg/ddu224.

83. Nowak R, Kwiecien M, Tkacz M, Mazurek U. Transforming growth factor-beta (TGF-) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. Biomed Res Int. 2014;2014:594287. DOI: 10.1155/2014/594287.

84. Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, Ku I, Takahashi A, Matsumoto M, Kamiya N, Murphy KK, Cornelia R, Herring JA, Burns D, Ahituv N, Ikegawa S, Gordon D, Wise CA. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun. 2015;6:6452. DOI: 10.1038/ncomms7452.

85. Zhu Z, Tang NL, Xu L, Qin X, Mao S, Song Y, Liu L, Li F, Liu P, Yi L, Chang J, Jiang L, Ng BK, Shi B, Zhang W, Qiao J, Sun X, Qiu X, Wang Z, Wang F, Xie D, Chen L, Chen Z, Jin M, Han X, Hu Z, Zhang Z, Liu Z, Zhu F, Qian BP, Yu Y, Wang B, Lee KM, Lee WYW, Lam TP, Qiu Y, Cheng JC. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun. 2015;6:8355. DOI: 10.1038/ncomms9355.

86. Черноземов В.Г., Дудин М.Г. Результаты комплексного обследования детей со сколиозами I–II степени, проживающих в регионе Европейского Севера России // Хирургия позвоночника. 2006. № 1. С. 39–43. [Chernozemov VG, Dudin MG. Results of complex examination of children with grade I–II scoliosis living in European North of Russia. Hir. Pozvonoc. 2006;(1):39–43].

87. Murray DW, Bulstrode CJ. The development of adolescent idiopathic scoliosis. Eur Spine J. 1996;5:251–257. DOI: 10.1007/bf00301328.

88. Stokes IA. Stature and growth compensation for spinal curvature. Stud Health Technol Inform. 2008;140:48–51.

89. Shi L, Wang D, Driscoll M, Villemure I, Chu WC, Cheng JC, Aubin CE. Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis. 2011;6:11. DOI: 10.1186/1748-7161-6-11.

90. Crijns TJ, Stadhouder A, Smit TH. Restrained differential growth: the initiating event of adolescent idiopathic scoliosis? Spine. 2017;42:E726–E732. DOI: 10.1097/brs.0000000000001946.

91. Guo X, Chau WW, Chan YL, Cheng JC, Burwell RG, Dangerfield PH. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis--result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur Spine J. 2005;14:862–873. DOI: 10.1007/s00586-005-1002-7.

92. Will RE, Stokes IA, Qiu X, Walker MR, Sanders JO. Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine. 2009;34:2782–2786. DOI: 10.1097/BRS.0b013e3181c11853.

93. Brink RC, Schlosser TPC, Colo D, Vavruch L, van Stralen M, Vincken KL, Malmqvist M, Kruyt MC, Tropp H, Castelein RM. Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine. 2017;42:818–822. DOI: 10.1097/brs.0000000000001919.

94. Zhu F, Chu WC, Sun G, Zhu ZZ, Wang WJ, Cheng JC, Qiu Y. Rib length asymmetry in thoracic adolescent idiopathic scoliosis: is it primary or secondary? Eur Spine J. 2011;20:254–259. DOI: 10.1007/s00586-010-1637-x.

95. Chen B, Tan Q, Chen H, Luo F, Xu M, Zhao J, Liu P, Sun X, Su N, Zhang D, Fan W, Liu M, Huang H, Wang Z, Huang J, Zhang R, Li C, Li F, Ni Z, Du X, Jin M, Yang J, Xie Y, Chen L. Imbalanced development of anterior and posterior thorax is a causative factor triggering scoliosis. J Orthop Translat. 2019;17:103–111. DOI: 10.1016/j.jot.2018.12.001.

96. Yang ZD, Li M. There may be a same mechanism of the left-right handedness and left-right convex curve pattern of adolescent idiopathic scoliosis. Med Hypotheses. 2011;76:274–276. DOI: 10.1016/j.mehy.2010.10.021.

97. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Scientific basis for the potential use of melatonin in bone diseases: osteoporosis and adolescent idiopathic scoliosis. J Osteoporos. 2010;2010:830231. DOI: 10.4061/2010/830231.

98. Yim AP, Yeung HY, Sun G, Lee KM, Ng TB, Lam TP, Ng BK, Qiu Y, Moreau A, Cheng JC. Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, MT2. Int J Mol Sci. 2013;14:6345–6358. DOI: 10.3390/ijms14036345.

99. Man GC, Wong JH, Wang WW, Sun GQ, Yeung BH, Ng TB, Lee SK, Ng BK, Qiu Y, Cheng JC. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res. 2011;50:395–402. DOI: 10.1111/j.1600-079X.2011.00857.x.

100. Yang P, Liu H, Lin J, Yang H. The association of rs4753426 polymorphism in the melatonin receptor 1B (MTNR1B) gene and susceptibility to adolescent idiopathic scoliosis: a systematic review and meta-analysis. Pain Physician. 2015;18:419–431.

101. Wang WW, Man GC, Wong JH, Ng TB, Lee KM, Ng BK, Yeung HY, Qiu Y, Cheng JC. Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15:17100–71114. DOI: 10.3390/ijms150917100.

102. Sadat-Ali M, al-Habdan I, al-Othman A. Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine. 2000;67:62–64.

103. Hilibrand AS, Blakemore LC, Loder RT, Greenfield ML, Farley FA, Hensinger RN, Hariharan M. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis. Spine. 1996;21:1140–1146. DOI: 10.1097/00007632-199605150-00004.

104. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br. 1995;77:134–138.

105. Kono H, Machida M, Saito M, Nishiwaki Y, Kato H, Hosogane N, Chiba K, Miyamoto T, Matsumoto M, Toyama Y. Mechanism of osteoporosis in adolescent idiopathic scoliosis: experimental scoliosis in pinealectomized chickens. J Pineal Res. 2011;51:387–393. DOI; 10.1111/j.1600-079X.2011.00901.x.

106. Wu JZ, Wu WH, He LJ, Ke QF, Huang L, Dai ZS, Chen Y. Effect of melatonin and calmodulin in an idiopathic scoliosis model. Biomed Res Int. 2016;2016:8460291. DOI: 10.1155/2016/8460291.

107. Man GC, Wang WW, Yim AP, Wong JH, Ng TB, Lam TP, Lee SK, Ng BK, Wang CC, Qiu Y, Cheng CY. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15:16484–16499. DOI: 10.3390/ijms150916484.

108. Pinchuk DY, Bekshaev SS, Bumakova SA, Dudin MG, Pinchuk OD. Bioelectric activity in the suprachiasmatic nucleus-pineal gland system in children with adolescent idiopathic scoliosis. ISRN Orthop. 2012;2012:987095. DOI: 10.5402/2012/987095.

109. Moreau A, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard CH, Grimard G. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29:1772–1781. DOI; 10.1097/01.brs.0000134567.52303.1a.

110. Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J. 2011;20 Suppl 1:S68–S74. DOI: 10.1007/s00586-011-1750-5.

111. Fagan AB, Kennaway DJ, Sutherland AD. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine. 1998;23:41–46. DOI: 10.1097/00007632-199801010-00009.

112. Machida M, Dubousset J, Yamada T, Kimura J. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression – a prospective study. J Pineal Res. 2009;46:344–348. DOI: 10.1111/j.1600-079X.2009.00669.x.

113. Li J, Li N, Chen Y, Hui S, Fan J, Ye B, Fan Z, Zhang J, Zhao RC, Zhuang Q. SPRY4 is responsible for pathogenesis of adolescent idiopathic scoliosis by contributing to osteogenic differentiation and melatonin response of bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2019;10:805. DOI: 10.1038/s41419-019-1949-7.

114. Yang M, Wei X, Yang W, Li Y, Ni H, Zhao Y, Chen Z, Bai Y, Li M. The polymorphisms of melatonin receptor 1B gene (MTNR1B) (rs4753426 and rs10830963) and susceptibility to adolescent idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2015;20:593–600. DOI: 10.1007/s00776-015-0725-5.

115. Shyy W, Wang K, Gurnett CA, Dobbs MB, Miller NH, Wise C, Sheffield VC, Morcuende JA. Evaluation of GPR50, hMel-1B, and ROR-alpha melatonin-related receptors and the etiology of adolescent idiopathic scoliosis. J Pediatr Orthop. 2010;30:539–543. DOI: 10.1097/BPO.0b013e3181e7902c.

116. Koyama H, Nakade O, Takada Y, Kaku T, Lau KHW. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down‐regulation of the RANKL‐mediated osteoclast formation and activation. J Bone Miner Res. 2002;17:1219–1229. DOI: 10.1359/jbmr.2002.17.7.1219.

117. Lowe TG, Burwell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J. 2004;13:257–265. DOI: 10.1007/s00586-003-0655-3.

118. Acaroglu E, Akel I, Alanay A, Yazici M, Marcucio R. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009;34:E659–E63. DOI: 10.1097/BRS.0b013e3181a3c7a2.

119. Lowe T, Lawellin D, Smith D, Price C, Haher T, Merola A, O’Brien M. Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine. 2002;27:768–775. DOI: 10.1097/00007632-200204010-00016.

120. Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, Anderson SI. Pathogenesis of adolescent idiopathic scoliosis in girls – a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis. 2009;4:24. DOI: 10.1186/1748-7161-4-24.

121. Wang YJ, Yu HG, Zhou ZH, Guo Q, Wang LJ, Zhang HQ. Leptin receptor metabolism disorder in primary chondrocytes from adolescent idiopathic scoliosis girls. Int J Mol Sci. 2016;17:1160. DOI: 10.3390/ijms17071160.

122. Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, Wang B, Yu Y, Qian B. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine. 2007;32:2703–2710. DOI: 10.1097/BRS.0b013e31815a59e5.

123. Tam EM, Liu Z, Lam T-P, Ting T, Cheung G, Ng BK, Lee SK, Qiu Y, Cheng JC. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine. 2016;41:940–946. DOI: 10.1097/BRS.0000000000001376.

124. Man GC, Tam EM, Wong YS, Hung VW, Hu Z, Lam TP, Liu Z, Cheng WH, Ng TB, Zhu Z, Qiu Y, Cheng JC. Abnormal osteoblastic response to leptin in patients with adolescent idiopathic scoliosis. Scientific Reports. 2019;9:1–7.

125. Kulis A, Gozdzialska A, Drag J, Jaskiewicz J, Knapik-Czajka M, Lipik E, Zarzycki D. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int Orthop. 2015;39:1227–1236. DOI: 10.1007/s00264-015-2742-6.

126. Zhou C, Wang H, Zou Y, Fang H. [Research progress of role of estrogen and estrogen receptor on onset and progression of adolescent idiopathic scoliosis]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2015;29:1441–1445.

127. Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab. 2009;20:147–152. DOI: 10.1016/j.tem.2008.12.004.

128. Willner S, Nilsson K, Kastrup K, Bergstrand C. Growth hormone and somatomedin A in girls with adolescent idiopathic scoliosis. Acta Paediatr Scand. 1976;65:547–552. DOI: 10.1111/j.1651-2227.1976.tb04930.x.

129. Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, Wang Y, Ding Y, Qiu G. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics. 2009;32:411. DOI: 10.3928/01477447-20090511-08.

130. Zhuang QY, Wu ZH, Qiu GX. [Is polymorphism of CALM1 gene or growth hormone receptor gene associated with susceptibility to adolescent idiopathic scoliosis?]. Zhonghua Yi Xue Za Zhi. 2007;87:2198–2202.

131. Park SJ, Lee KH, Lee CS, Kim KT, Jang JH, Shin DH, Kim MS, Kim J, Cho SY, Jin DK. Impact of growth hormone treatment on scoliosis development and progression: analysis of 1128 patients with idiopathic short stature. J Pediatr Endocrinol Metab. 2021;34:243–250. DOI: 10.1515/jpem-2020-0393.

132. Day GA, McPhee IB, Batch J, Tomlinson FH. Growth rates and the prevalence and progression of scoliosis in short-statured children on Australian growth hormone treatment programmes. Scoliosis. 2007;2:3. DOI: 10.1186/1748-7161-2-3.

133. Suh KT, Lee SS, Hwang SH, Kim SJ, Lee JS. Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2007;16:1563–1569. DOI: 10.1007/s00586-007-0390-2.

134. Zhou S, Wang W, Zhu Z, Sun X, Zhu F, Yu Y, Qian B, Wang B, Yin G, Qiu Y. Increased expression of receptor activator of nuclear factor-κB ligand in osteoblasts from adolescent idiopathic scoliosis patients with low bone mineral density. J Huazhong Univ Sci Technolog Med Sci. 2012;32:686–690. DOI: 10.1007/s11596-012-1018-2.

135. Eun IS, Park WW, Suh KT, Kim JI, Lee JS. Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18:1936–1940. DOI: 10.1007/s00586-009-1145-z.

136. Wang Wj, Sun C, Liu Z, Sun X, Zhu F, Zhu ZZ, Qiu Y. Transcription factor Runx2 in the low bone mineral density of girls with adolescent idiopathic scoliosis. Orthop Surg. 2014;6:8–14. DOI: 10.1111/os.12087.

137. Song XX, Jin LY, Li XF, Qian L, Shen HX, Liu ZD, Yu BW. Effects of low bone mineral status on biomechanical characteristics in idiopathic scoliotic spinal deformity. World Neurosurg. 2018;110:e321–e329. DOI: 10.1016/j.wneu.2017.10.177.

138. Sun ZJ, Jia HM, Qiu GX, Zhou C, Guo S, Zhang JG, Shen JX, Zhao Y, Zou ZM. Identification of candidate diagnostic biomarkers for adolescent idiopathic scoliosis using UPLC/QTOF-MS analysis: a first report of lipid metabolism profiles. Sci Rep. 2016;6:22274. DOI: 10.1038/srep22274.

139. Ghosh P, Bushell GR, Taylor TK, Pearce RH, Grimmer BJ. Distribution of glycosaminoglycans across the normal and the scoliotic disc. Spine. 1980;5:310–317. DOI: 10.1097/00007632-198007000-00004.

140. He Y, Qiu Y, Zhu F, Zhu Z. Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:123–128.

141. Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am. 2000;82:1157–1168. DOI: 10.2106/00004623-200008000-00014.

142. Golding J. Observations on idiopathic scoliosis aetiology and natural history in Jamaica: A food and growth connection. Cajanus. 1991;24:31–38.

143. Kikanloo SR, Tarpada SP, Cho W. Etiology of adolescent idiopathic scoliosis: a literature review. Asian Spine J. 2019;13:519-526. DOI: 10.31616/asj.2018.0096.

144. Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M. High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses. 2010;75:126–127. DOI: 10.1016/j.mehy.2010.02.006.

145. Ji XR, Yang ZD, Yang XH, Liu DD, Ni HJ, Li M. Change of selenium in environment and risk of adolescent idiopathic scoliosis: a retrospective cohort study. Eur Rev Med Pharmacol Sci. 2013;17:2499–2503.

146. Shen N, Chen N, Zhou X, Zhao B, Huang R, Liang J, Yang X, Chen M, Song Y, Du Q. Alterations of the gut microbiome and plasma proteome in Chinese patients with adolescent idiopathic scoliosis. Bone. 2019;120:364–370. DOI: 10.1016/j.bone.2018.11.017.

147. Ng SY, Bettany-Saltikov J, Cheung IYK, Chan KKY. The role of vitamin D in the pathogenesis of adolescent idiopathic scoliosis. Asian Spine J. 2018;12:1127–1145. DOI: 10.31616/asj.2018.12.6.1127.

148. Herdea A, Charkaoui A, Ulici A. Prevalence of 25-OH-vitamin D and calcium deficiency in adolescent idiopathic scoliosis. J Med Life. 2020;13:260–264. DOI: 10.25122/jml-2020-0101.

149. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, El-Hajj Fuleihan G, Josse RG, Lips P, Morales-Torres J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20:1807–1820. DOI: 10.1007/s00198-009-0954-6.

150. Balioglu MB, Aydin C, Kargin D, Albayrak A, Atici Y, Tas SK, Kaygusuz MA. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop B. 2017;26:48–52. DOI: 10.1097/bpb.0000000000000320.

151. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Increased anxiety in mice lacking vitamin D receptor gene. Neuroreport. 2004;15:1271–1274. DOI: 10.1097/01.wnr.0000129370.04248.92.

152. Minasyan A, Keisala T, Zou J, Zhang Y, Toppila E, Syvala H, Lou YR, Kalueff AV, Pyykko I, Tuohimaa P. Vestibular dysfunction in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol. 2009;114:161–166. DOI: 10.1016/j.jsbmb.2009.01.020.

153. Yin X, Wang H, Guo J, Zhang L, Zhang Y, Li L, Hou S. Association of vitamin D receptor BsmI rs1544410 and ApaI rs7975232 polymorphisms with susceptibility to adolescent idiopathic scoliosis: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97:e9627. DOI: 10.1097/md.0000000000009627.

154. Chen WJ, Qiu Y, Zhu F, Zhu ZZ, Sun X, Liu Z, Chen ZJ. [Vitamin D receptor gene polymorphisms: no association with low bone mineral density in adolescent idiopathic scoliosis girls]. Zhonghua Wai Ke Za Zhi. 2008;46:1183–1186.

155. McMaster ME. Heated indoor swimming pools, infants, and the pathogenesis of adolescent idiopathic scoliosis: a neurogenic hypothesis. Environ Health. 2011;10:86. DOI: 10.1186/1476-069x-10-86.

156. McMaster ME, Lee AJ, Burwell RG. Indoor heated swimming pools: the vulnerability of some infants to develop spinal asymmetries years later. Stud Health Technol Inform. 2006;123:151–155.

157. McMaster ME, Lee AJ, Burwell RG. Physical activities of patients with adolescent idiopathic scoliosis (AIS): preliminary longitudinal case–control study historical evaluation of possible risk factors. Scoliosis. 2015;10:6. DOI: 10.1186/s13013-015-0029-8.

158. Watanabe K, Michikawa T, Yonezawa I, Takaso M, Minami S, Soshi S, Tsuji T, Okada E, Abe K, Takahashi M, Asakura K, Nishiwaki Y, Matsumoto M. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2017;99:284–294. DOI: 10.2106/jbjs.16.00459.


Рецензия

Для цитирования:


Горбач А.П., Сергеенко О.М., Щурова Е.Н. Идиопатический сколиоз как мультифакторное заболевание: систематизированный обзор современной литературы. Хирургия позвоночника. 2022;19(2):19-32. https://doi.org/10.14531/ss2022.2.19-32

For citation:


Gorbach A.P., Sergeenko O.M., Shchurova E.N. Idiopathic scoliosis as a multifactorial disease: systematic review of current literature. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2022;19(2):19-32. https://doi.org/10.14531/ss2022.2.19-32



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)