Предикторы непрямой декомпрессии у пациентов с моносегментарным стенозом позвоночного канала в поясничном отделе
https://doi.org/10.14531/ss2025.4.56-65
Аннотация
Цель исследования. Определить предикторы непрямой декомпрессии корешков спинного мозга у пациентов с дегенеративным моносегментарным центральным стенозом позвоночного канала в поясничном отделе после изолированного прямого бокового спондилодеза (XLIF).
Материал и методы. В проспективном исследовании анализируются результаты лечения 80 пациентов с моносегментарным центральным дегенеративным стенозом позвоночного канала на фоне нестабильности позвоночно-двигательного сегмента. Всем пациентам выполнен одноуровневый XLIF без дополнительной задней фиксации. С учетом данных раннего послеоперационного периода пациентов разделили на группы с отсутствием положительной динамики в неврологическом статусе (n = 58) и с положительной динамикой в виде снижения болевого синдрома в нижних конечностях до 1 балла по ВАШ (n = 22). Всем пациентам до операции выполняли МРТ, МСКТ, рентгенографию поясничного отдела позвоночника, анкетирование по ВАШ, после операции – МРТ и МСКТ поясничного отдела и анкетирование по ВАШ. Прогностическую значимость изучаемых факторов для результатов лечения определяли по логистическому регрессионному анализу.
Результаты. С помощью моделей логистических регрессий по многофакторной модели выявлены значимые прогностические факторы эффективности непрямой декомпрессии корешков спинного мозга в позвоночном канале после XLIF: глубина латерального кармана более 3,75 мм, индекс массы тела более 35,97 кг/м2. По однофакторной модели выявили, что более высокая плотность костной ткани в телах позвонков, оцененная по Хаунсфилду, в телах смежных позвонков, более низкий межпозвонковый диск, наличие латероспондилолистеза, дегенерация межпозвонкового диска по Pfirrmann (Grade 4, 5), изменения замыкательных пластинок по TEPS 4, 5, 6 и клиника динамической компрессии являются умеренными прогностическими факторами успешной непрямой декомпрессии корешков спинного мозга в позвоночном канале после XLIF при его дегенеративном центральном стенозе на фоне нестабильности позвоночно-двигательного сегмента.
Заключение. Требуются дальнейшие исследования, направленные на валидизацию выявленных прогностических критериев, а также других возможных прогностических показателей – сроков формирования костного блока в зоне операции, частоты проседаний имплантата и их клинической значимости в отдаленном периоде, долгосрочности эффекта непрямой декомпрессии, результатов опроса по ODI и SF-12 в отдаленном послеоперационном периоде.
Ключевые слова
Об авторах
И. Д. ИсаковРоссия
Илья Дмитриевич Исаков, младший научный сотрудник отделения вертебрологии,
Россия, 630091, Новосибирск, ул. Фрунзе, 17
А. Д. Сангинов
Россия
Абдугафур Джабборович Сангинов, канд. мед. наук, научный сотрудник отделения вертебрологии,
Россия, 630091, Новосибирск, ул. Фрунзе, 17
E. А. Мушкачев
Россия
Евгений Андреевич Мушкачев, младший научный сотрудник отделения вертебрологии,
Россия, 630091, Новосибирск, ул. Фрунзе, 17
А. В. Пелеганчук
Россия
Алексей Владимирович Пелеганчук, канд. мед. наук, старший научный сотрудник отделения вертебрологии,
Россия, 630091, Новосибирск, ул. Фрунзе, 17
Список литературы
1. Ravindra VM, Senglaub SS, Rattani A, Dewan MC, Härtl R, Bisson E, Park KB, Shrime MG. Degenerative lumbar spine disease: estimating global incidence and worldwide volume. Global Spine J. 2018;8:784–794. DOI: 10.1177/2192568218770769
2. Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, Uribe JS. Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci. 2015;22:740–746. DOI: 10.1016/j.jocn.2014.08.036
3. Alimi M, Hofstetter CP, Tsiouris AJ, Elowitz E, Härtl R. Extreme lateral interbody fusion for unilateral symptomatic vertical foraminal stenosis. Eur Spine J. 2015;24 Suppl 3:346–352. DOI: 10.1007/s00586-015-3940-z
4. Campbell PG, Nunley PD, Cavanaugh D, Kerr E, Utter PA, Frank K, Stone M. Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4–5. Neurosurg Focus. 2018;44:E6. DOI: 10.3171/2017.10.FOCUS17566
5. Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG. Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res. 2014;472:1784–1791. DOI: 10.1007/s11999-014-3464-6
6. Domínguez I, Luque R, Noriega M, Rey J, Alia J, Marco-Martínez F. Extreme lateral lumbar interbody fusion. Surgical technique, outcomes and complications after a minimum of one year follow-up. Rev Esp Cir Ortop Traumatol. 2017;61:8–18. DOI: 10.1016/j.recot.2016.09.001
7. Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C. Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J. 2014;23 Suppl 6:684–692. DOI: 10.1007/s00586-014-3545-y
8. Navarro-Ramirez R, Berlin C, Lang G, Hussain I, Janssen I, Sloan S, Askin G, Avila MJ, Zubkov M, Härtl R. A new volumetric radiologic method to assess indirect decompression after extreme lateral interbody fusion using high-resolution intraoperative computed tomography. World Neurosurg. 2018;109:59–67. DOI: 10.1016/j.wneu.2017.07.155
9. Pereira EA, Farwana M, Lam KS. Extreme lateral interbody fusion relieves symptoms of spinal stenosis and lowgrade spondylolisthesis by indirect decompression in complex patients. J Clin Neurosci. 2017;35:56–61. DOI: 10.1016/j.jocn.2016.09.010
10. Tessitore E, Molliqaj G, Schaller K, Gautschi OP. Extreme lateral interbody fusion (XLIF): A single-center clinical and radiological follow-up study of 20 patients. J Clin Neurosci. 2017;36:76–79. DOI: 10.1016/j.jocn.2016.10.001
11. Tohmeh AG, Khorsand D, Watson B, Zielinski X. Radiographical and clinical evaluation of extreme lateral interbody fusion: effects of cage size and instrumentation type with a minimum of 1-year follow-up. Spine (Phila Pa 1976). 2014;39:E1582–E1591. DOI: 10.1097/BRS.0000000000000645
12. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–443. DOI: 10.1016/j.spinee.2005.08.012
13. McAfee PC, Regan JJ, Geis WP, Fedder IL. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976). 1998;23:1476–1484. DOI: 10.1097/00007632-199807010-00009
14. Wang MY, Vasudevan R, Mindea SA. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J Neurosurg Spine. 2014;21:861–866. DOI: 10.3171/2014.8.SPINE13841
15. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1:2–18. DOI: 10.3978/j. issn.2414-469X.2015.10.05
16. Lee DH, Lee DG, Hwang JS, Jang JW, Maeng DH, Park CK. Clinical and radiological results of indirect decompression after anterior lumbar interbody fusion in central spinal canal stenosis. J Neurosurg Spine. 2021;34:564–572. DOI: 10.3171/2020.7.SPIN E191335
17. Gagliardi MJ, Guiroy AJ, Camino-Willhuber G, Joaquim AF, Carazzo CA, Yasuda E, Cabrera JP, Morales Ciancio AR. Is indirect decompression and fusion more effective than direct decompression and fusion for treating degenerative lumbar spinal stenosis with instability? A systematic review and meta-analysis. Global Spine J. 2023;13:499–511. DOI: 10.1177/21925682221098362
18. Kirnaz S, Navarro-Ramirez R, Gu J, Wipplinger C, Hussain I, Adjei J, Kim E, Schmidt FA, Wong T, Hernandez RN, Härtl R. Indirect decompression failure after lateral lumbar interbody fusion-reported failures and predictive factors: systematic review. Global Spine J. 2020;10(2 Suppl):8S–16S. DOI: 10.1177/2192568219876244
19. Schizas C, Theumann N, Burn A, Tansey R, Wardlaw D, Smith FW, Kulik G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976). 2010;35:1919–24. DOI: 10.1097/BRS.0b013e3181d359bd
20. Elmose SF, Andersen GO, Carreon LY, Sigmundsson FG, Andersen MO. Radiological definitions of sagittal plane segmental instability in the degenerative lumbar spine – A systematic review. Global Spine J. 2023;13:523–533. DOI: 10.1177/21925682221099854
21. Khalsa AS, Eghbali A, Eastlack RK, Tran S, Akbarnia BA, Ledesma JB, Mundis GM. Resting pain level as a preoperative predictor of success with indirect decompression for lumbar spinal stenosis: a pilot study. Global Spine J. 2019;9:150–154. DOI: 10.1177/2192568218765986
22. Grogan J, Nowicki BH, Schmidt TA, Haughton VM. Lumbar facet joint tropism does not accelerate degeneration of the facet joints. AJNR Am J Neuroradiol. 1997;18:1325–1329.
23. Крутько А.В., Сангинов А.Д. К вопросу об объеме предоперационного радиологического и томографического обследования пациентов с дегенеративными заболеваниями поясничного отдела позвоночника. Хирургия позвоночника. 2018;15(2):66–75. [Krutko A.V., Sanginov A.D. On the extent of preoperative radiological and ct examination of patients with degenerative diseases of the lumbar spine. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2018;15(2):66–75.] DOI: 10.14531/ss2018.2.66-75
24. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–199. DOI: 10.1148/radiology.166.1.3336678
25. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26:1873–1878. DOI: 10.1097/00007632-200109010-00011
26. Steurer J, Roner S, Gnannt R, Hodler J, LumbSten Research Collaboration. Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord. 2011;12:175. DOI: 10.1186/1471-2474-12-175
27. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J. 2008;17:626–643. DOI: 10.1007/s00586-008-0645-6
28. Khil EK, Choi JA, Hwang E, Sidek S, Choi I. Paraspinal back muscles in asymptomatic volunteers: quantitative and qualitative analysis using computed tomography (CT) and magnetic resonance imaging (MRI). BMC Musculoskelet Disord. 2020;21:403. DOI: 10.1186/s12891-020-03432-w
29. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;(304):78–83.
30. Леонова О.Н., Байков Е.С., Крутько А.В. Декомпрессия и стабилизация поясничного отдела позвоночника при его дегенеративной патологии. Необходимый минимум предоперационного обследования. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2025;32(2):375–384. [Leonova ON, Baykov ES, Krutko AV. Lumbar decompression and stabilization in degenerative disease: essential preoperative examinations. N.N. Priorov Journal of Traumatology and Orthopedics. 2025;32(2):375– 384]. DOI: 10.17816/vto636804 EDN: RXXMHY
31. Park D, Mummaneni PV, Mehra R, Kwon Y, Kim S, Ruan HB, Chou D. Predictors of the need for laminectomy after indirect decompression via initial anterior or lateral lumbar interbody fusion. J Neurosurg Spine. 2020;32:781–787. DOI: 10.3171/2019.11.SPINE19314
32. Walker CT, Xu DS, Cole TS, Alhilali LM, Godzik J, Angel Estrada S, Pedro Giraldo J, Wewel JT, Morgan CD, Zhou JJ, Whiting AC, Farber SH, Martirosyan NL, Turner JD, Uribe JS. Predictors of indirect neural decompression in minimally invasive transpsoas lateral lumbar interbody fusion. J Neurosurg Spine. 2021;35:80–90. DOI: 10.3171/2020.8.SPINE20676
33. Wang TY, Nayar G, Brown CR, Pimenta L, Karikari IO, Isaacs RE. Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg. 2017;106:819–826. DOI: 10.1016/j.wneu.2017.07.045
34. Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, Yamaguchi H, Imagama S. Indirect decompression on MRI chronologically progresses after immediate postlateral lumbar interbody fusion: the results from a minimum of 2 years follow-up. Spine (Phila Pa 1976). 2019;44:E1411–E1418. DOI: 10.1097/BRS.0000000000003180
35. Shimizu T, Fujibayashi S, Otsuki B, Murata K, Matsuda S. Indirect decompression with lateral interbody fusion for severe degenerative lumbar spinal stenosis: minimum 1-year MRI follow-up. J Neurosurg Spine. 2020;33:27–34. DOI: 10.3171/2020.1.SPINE191412
36. Li J, Xu TZ, Zhang N, Chen QX, Li FC. Predictors for second-stage posterior direct decompression after lateral lumbar interbody fusion: a review of five hundred fiftyseven patients in the past five years. Int Orthop. 2022;46:1101–1109. DOI: 10.1007/s00264-022-05313-4
Рецензия
Для цитирования:
Исаков И.Д., Сангинов А.Д., Мушкачев E.А., Пелеганчук А.В. Предикторы непрямой декомпрессии у пациентов с моносегментарным стенозом позвоночного канала в поясничном отделе. Хирургия позвоночника. 2025;22(4):56-65. https://doi.org/10.14531/ss2025.4.56-65
For citation:
Isakov I.D., Sanginov A.J., Mushkachev E.A., Peleganchuk A.V. Predictors of indirect decompression in patients with monosegmental lumbar spinal stenosis. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2025;22(4):56-65. (In Russ.) https://doi.org/10.14531/ss2025.4.56-65






























