КИНЕМАТИКА ПОЯСНИЧНЫХ СЕГМЕНТОВ, СМЕЖНЫХ С ИНСТРУМЕНТАЛЬНЫМ РИГИДНЫМ ЗАДНЕБОКОВЫМ СПОНДИЛОДЕЗОМ
https://doi.org/10.14531/ss2014.3.45-53
Аннотация
Цель исследования. Изучение диапазона движений сегментов проксимальнее зоны спондилодеза и его взаимосвязи с некоторыми параметрами вертикальной позы пациентов с поясничным остеохондрозом и дегенеративным поясничным спондилолистезом на этапах хирургического лечения.
Материал и методы. Проанализированы протоколы клинико-рентгенологического обследования 52 пациентов мужского пола с нестабильностью нижнепоясничных сегментов в сочетании со спондилоартрозом и/или стенозом позвоночного канала, и/или грыжами поясничных межпозвонковых дисков. Использовали клинический
и рентгенологический методы обследования.
Результаты. До операции у всех пациентов выявлено уплощение поясничного лордоза и вертикализация крестца в сочетании с существенным уменьшением экскурсии поясничного отдела позвоночника. Улучшение сагиттального контура позвоночника после хирургического лечения не привело к значимому улучшению кинематики поясничных сегментов.
Заключение. Изменение подвижности поясничных сегментов может быть связано с некорректными паттернами движения вследствие неустраненных миотонических реакций и неадекватных двигательных стратегий.
Об авторах
Владимир Александрович РадченкоРоссия
Вера Анатольевна Колесниченко
Россия
Ма Конг
Россия
Артем Геннадиевич Скиданов
Россия
Константин Николаевич Литвиненко
Россия
Список литературы
1. Auerbach JD, Jones KJ, Milby AH, et al. Segmental contribution toward total lumbar range of motion in disc replacement and fusions: a comparison of operative and adjacent levels. Spine. 2009;34:2510-2517. doi: 10.1097/BRS.0b013e3181af2622.
2. Auerbach JD, Wills BP, McIntosh TC, et al. Evaluation of spinal kinematics following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. Spine. 2007;32:527-536.
3. Bastian L, Lange U, Knop C, еt al. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J. 2001;10:295-300.
4. Brumagne S, Cordo P, Lysens R, et al. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine. 2000; 25:989-994.
5. Cakir B, Carazzo C, Schmidt R, et al. Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine. 2009;34:1287-1291. doi: 10.1097/BRS.0b013e3181a136ab.
6. Chen WJ, Lai PL, Chen LH. Adjacent instability after instrumented lumbar fusion. Chang Gung Med J. 2003;26:792-798.
7. Chen WJ, Lai PL, Tai CL, et al. The effect of sagittal alignment on adjacent joint mobility after lumbar instrumentation - a biomechanical study of lumbar vertebrae in a porcine model. Clin Biomech (Bristol, Avon). 2004;19:763-768.
8. Cheng BC, Gordon J, Cheng J, еt аl. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine. 2007;32:2551-2557.
9. Chow DH, Luk KD, Evans JH, et al. Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine. 1996;21:549-555.
10. Cobb JR. Outline for the study of scoliosis. Instr Course Lectures. The American Academy of Orthopaedic Surgeons. 1948;5:261-275.
11. Cosette JW, Farfan HF, Robertson GH, et al. The instantaneous center of rotation of the third lumbar vertebral joint. J Biomech. 1971;4:149-153.
12. Dekutoski MB, Schendel MJ, Ogilvie JW, et al. Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine. 1994;19:1745-1751.
13. Dolan P, Earley M, Adams MA. Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech. 1994;27:1237-1248.
14. Duval-Beaupere G, Schmidt C, Cosson PH. A barycentremetric study of the sagittal shape of the spine and pelvis: the conditions required for an economic position. Ann Biomed Eng. 1992;20:451-462.
15. Ensink FB, Saur PM, Frese K, et al. Lumbar range of motion: influence of time of day and individual factors on measurements. Spine. 1996;21:1339-1343.
16. Esses SI, Doherty BJ, Crawford MJ, et al. Kinematic evaluation of lumbar fusion techniques. Spine. 1996;21:676-684.
17. Glassman SD, Berven S, Bridwell K, et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine. 2005;30:682-688.
18. Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30:2024-2029.
19. Goldstein JA, Macenski MJ, Griffith SL, et al. Lumbar sagittal alignment after fusion with a threaded interbody cage. Spine. 2001;26:1137-1142.
20. Harada M, Abumi K, Ito M, et al. Cineradiographic motion analysis of normal lumbar spine during forward and backward flexion. Spine. 2000;25:1932-1937.
21. Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol. 2003;13:361-370.
22. Kim MK, Lee SH, Kim ES, et al. The impact of sagittal balance on clinical results after posterior interbody fusion for patients with degenerative spondylolisthesis: a pilot study. BMC Musculoskelet Disord. 2011;12:69. doi: 10.1186/1471-2474-12-69.
23. Kim HJ, Moon SH, Chun HJ, et al. Comparison of mechanical motion profiles following instrumented fusion and non-instrumented fusion at the L4-5 segment. Clin Invest Med. 2009;32:E64-E69.
24. Lazennec JY, Ramare S, Arafati N, et al. Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J. 2000;9:47-55.
25. Lee CK, Langrana NA. Lumbosacral spinal fusion. A biomechanical study. Spine. 1984;9:574-581.
26. Le Huec JC, Charosky S, Barrey C, et al. Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J. 2011;20 Suppl 5:699-703. doi: 10.1007/s00586-011-1938-8.
27. Mac-Thiong JM, Transfeldt EE, Mehbod AA, et al. Can c7 plumbline and gravity line predict health related quality of life in adult scoliosis? Spine. 2009;34:E519-E527. doi: 10.1097/BRS.0b013e3181a9c7ad.
28. Morishita Y, Ohta H, Naito M, et al. Kinematic evaluation of the adjacent segments after lumbar instrumented surgery: a comparison between rigid fusion and dynamic non-fusion stabilization. Eur Spine J. 2011;20:1480-1485. doi: 10.1007/s00586-011-1701-1.
29. Nagata H, Schendel MJ, Transfeldt EE, et al. The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine. 1993;18:2471-2479.
30. Nelson-Wong E, Alex B, Csepe D, et al. Altered muscle recruitment during extension from trunk flexion in low back pain developers. Clin Biomech (Bristol, Avon). 2012;27:994-998. doi: 10.1016/j.clinbiomech.2012.07.007.
31. Okuda S, Iwasaki M, Miyauchi A, et al. Risk factors for adjacent segment degeneration after PLIF. Spine. 2004;29:1535-1540.
32. Panjabi MM. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J. 2006;15:668-676.
33. Panjabi M, Malcolmson G, Teng E, et al. Hybrid testing of lumbar CHARITE discs versus fusions. Spine. 2007;32:959-966.
34. Panjabi M, Yamamoto I, Oxland T, et al. How does posture affect the coupling in the lumbar spine? Spine. 1989;14:1002-1011.
35. Pearcy M, Portek J, Shepherd J. Three-dimensional x-ray analysis of normal movement in the normal spine. Spine. 1984;9:294-297.
36. Pearcy MJ. Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl. 1985;212:1-45.
37. Pearcy MJ, Tibrewal SB. Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine. 1984;9:582-587.
38. Pedersen J, Ljubisavljevic M, Bergenheim M, et al. Alterations in information transmission in ensembles of primary muscle spindle afferents after muscle fatigue in heteronymous muscle. Neuroscience. 1998;84:953-959.
39. Phillips S, Mercer S, Bogduk N. Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng H. 2008;222:151-159.
40. Rao RD, David KS, Wang M. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages. Spine. 2005;30:2772-2776.
41. Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: biomechanical approach. Eur Spine J. 2011;20 Suppl 5:578-585. doi: 10.1007/s00586-011-1924-1.
42. Shono Y, Kaneda K, Abumi K, et al. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine. 1998;23:1550-1558.
43. Troke M, Moore AP, Maillardet FJ, et al. A new, comprehensive normative database of lumbar spine ranges of motion. Clin Rehabil. 2001;15:371-379.
44. Umehara S, Zindrick MR, Patwardhan AG, et al. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine. 2000;25:1617-1624.
45. White AA, Panjabi MM. Clinical Biomechanics of the Spine. 2nd ed. Philadelphia PA: J.B. Lippincott Company, 1990. 772 p.
46. Xia Q, Wang S, Passias PG, et al. In vivo range of motion of the lumbar spinous processes. Eur Spine J. 2009;18:1355-1362. doi: 10.1007/s00586-009-1068-8.
47. Yang SW, Langrana NA, Lee CK. Biomechanics of lumbosacral spinal fusion in combined compression-torsion loads. Spine. 1986;11:937-941.
48. Zhao K, Yang C, Zhao C, et al. Assessment of non-invasive intervertebral motion measurements in the lumbar spine. J Biomech. 2005;38:1943-1946.
Рецензия
Для цитирования:
Радченко В.А., Колесниченко В.А., Конг М., Скиданов А.Г., Литвиненко К.Н. КИНЕМАТИКА ПОЯСНИЧНЫХ СЕГМЕНТОВ, СМЕЖНЫХ С ИНСТРУМЕНТАЛЬНЫМ РИГИДНЫМ ЗАДНЕБОКОВЫМ СПОНДИЛОДЕЗОМ. Хирургия позвоночника. 2014;(3):45-53. https://doi.org/10.14531/ss2014.3.45-53
For citation:
Radchenko V.A., Kolesnichenko V.A., Cong M., Skidanov A.G., Litvinenko K.N. KINEMATICS OF LUMBAR SEGMENTS ADJACENT TO THE RIGID INSTRUMENTED POSTEROLATERAL SPINAL FUSION. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(3):45-53. (In Russ.) https://doi.org/10.14531/ss2014.3.45-53