Preview

Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika)

Advanced search

ELECTROPHYSIOLOGICAL DISTURBANCES AT SPINAL CORD LOCAL COMPRESSION INJURY

https://doi.org/10.14531/ss2009.1.76-80

Abstract

Objective. To study changes in the levels of direct potential (LDP) and electrospinogramm (ESG) at spinal cord local compressive injury.

Material and Methods. The study was performed in 13 outbred male rats. A local compression spinal cord injury was modeled by graduated compression of the spinal cord at the T10 level during 15 minutes. Registration of bioelectric activity was carried out by Ag/AgCl electrodes by means of a 4‑channel DC amplifier with 1 MOhm input resistance.

Results. Simultaneous LDP and ESG registration is an effective method of spinal cord functional diagnostics. The isolated assessment of ESG or LDP changes has much less prognostic and diagnostic value; therefore complex registration of these parameters should be performed for more exact assessment of a spinal cord functional state.

Conclusion. The suggested procedure for functional assessment of the spinal cord extends the possibilities of purposive search and study of new medicines for prophylaxis and treatment of patients with ischemic and traumatic lesions of the spinal cord.

About the Authors

Andrey Grigoryevich Shapkin
East-Siberian Minimally Invasive Neurosurgical Centre, Irkutsk
Russian Federation


Galina Zinovyevna Sufianova
Irkutsk State Medical University
Russian Federation


Albert Akramovich Sufianov
East-Siberian Minimally Invasive Neurosurgical Centre, Irkutsk
Russian Federation


Yury Grigoryevich Shapkin
Irkutsk State Medical University
Russian Federation


Mikhail Vitalyevich Taborov
East-Siberian Minimally Invasive Neurosurgical Centre, Irkutsk
Russian Federation


Vladimir Petrovich Shevchenko
Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


References

1. Костюк П.Г. Электрофизиология спинного мозга // Современные проблемы электрофизиологических исследований нервной системы. М., 1964. С. 115—131.

2. Луцик А.А., Бородина Л.А., Краузе Н.А. и др. Эпидемиология травмы центральной нервной системы. Л., 1989.

3. Оноприенко А.П. Клинико-диагностическое значение показателей биоэлектрической активности спинного мозга по данным электромиелографии // Врачебное дело. 1984. № 1. С. 105—106.

4. Оноприенко А.П. О регистрации биоэлектрических потенциалов спинного мозга // Врачебное дело. 1987. №2. С. 98—101.

5. Сахаров В.Л., Андреенко А.С. Методы математической обработки электроэнцефалограмм. Таганрог, 2000.

6. Суфианова Г.З. Нейропротекторное действие агонистов аденозиновых рецепторов при фокальных ишемических и травматических повреждениях ЦНС: Дис.… д-ра мед. наук. Иркутск, 2003.

7. Шапкин А.Г. Диагностические возможности регистрации спонтанной биоэлектрической активности и механизмы изменения функционального состояния спинного мозга при повреждении (экспериментально-клиническое исследование). Дис.… канд. мед. наук. Новосибирск, 2005.

8. Шевелев И.Н., Басков А.В., Яриков Д.Е. и др. Восстановление функции спинного мозга: современные возможности и перспективы исследования // Вопросы нейрохирургии им. Н.Н. Бурденко. 2000. № 3. С. 35—39.

9. Штарк М. Б. Электрические потенциалы спинного мозга человека в норме и патологии // Вопросы клиники, патофизиологии и терапии психических заболеваний. Пермь, 1959. С. 224—240.

10. Besson J.M., Woody C.D., Aleonard P. et al. Correlations of brain d-c shifts with changes in cerebral blood flow // Am. J. Physiol. 1970. Vol. 218. P. 284—291.

11. Dijkhuizen R.M., Beekwilder J.P., van der Worp H.B., et al. Correlation between tissue depolarizations and damage in focal ischemic rat brain // Brain Res. 1999. Vol. 840. P. 194—205.

12. Hossmann K.A. [Glutamate hypothesis of stroke] // Fortschr. Neurol. Psychiatr. 2003. Vol. 71. Suppl. 1. P. S10—S15. German.

13. Hossmann K.A. Periinfarct depolarizations // Cerebrovasc. Brain Metab. Rev. 1996. Vol. 8. P. 195—208.

14. Kaminogo M., Ichikura A., Onizuka M., et al. Mild hypothermia on anoxic depolarization and subsequent cortical injury following transient ischemia // Neurol. Res. 1999. Vol. 21. P. 670—676.

15. Krenz N.R., Weaver L.C. Effect of spinal cord transection on N-methyl-D-aspartate receptors in the cord // J. Neurotrauma. 1998. Vol. 15. P. 1027—1036.

16. Kubota M., Nakamura T., Sunami K., et al. Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity // Neurosurg. Rev. 1989. Vol. 12. Suppl. 1. P. 393—399.

17. Mies G., Iijima T., Hossmann K.A. Correlation between peri — infarct DC shifts and ischaemic neuronal damage in rat // Neuroeport. 1993. Vol. 4. P. 709—711.

18. Nedergaard M., Hansen A.J. Characterization of cortical depolarizations evoked in focal cerebral ischemia // J. Cereb. Blood Flow Metab. 1993. Vol. 13. P. 568—574.

19. Niedermeyer E., Lopes Da Silva F. Electroencephalography: Basic Principles, Clinical Applications and Related Fields. 5th ed. Philadelphia, 2005.

20. Park E., Velumian A.A., Fehlings M.G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration // Neurotrauma. 2004. Vol. 21. P. 754—774.

21. Rossini P.M., Greco F., De Palma L., et al. Electrospinogram of the rabbit. Monitoring of the spinal conduction in acute cord lesions versus clinical observation // Eur. Neurol. 1980. Vol. 19. P. 409—413.

22. Tatlisumak T., Takano K., Meiler M.R., et al. A glycine site antagonist ZD9379 reduces number of spreading depressions and infarct size in rats with permanent middle cerebral artery occlusion // Acta Neurochir. Suppl. 2000. Vol. 76. P. 331—333.

23. Tator C.H. Strategies for recovery and regeneration after brain and spinal cord injury // Inj. Prev. 2002. Vol. 8. Suppl. 4. P. 33—36.

24. Tator C.H. Update on the pathophysiology and pathology of acute spinal cord injury // Brain Pathol. 1995. Vol. 5. P. 407—413.

25. Van Gestel M.A. [The electrospinogram in dogs] // Tijdschr. Diergeneeskd. 1986. Vol.111. P. 1185—1188. Dutch.

26. Watanabe S., Hoffman J.R., Craik R.L., et al. A new model of localized ischemia in rat somatosensory cortex produced by cortical compression // Stroke. 2001. Vol. 32. P. 2615—2623.


Review

For citations:


Shapkin A.G., Sufianova G.Z., Sufianov A.A., Shapkin Yu.G., Taborov M.V., Shevchenko V.P. ELECTROPHYSIOLOGICAL DISTURBANCES AT SPINAL CORD LOCAL COMPRESSION INJURY. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2009;(1):076-080. (In Russ.) https://doi.org/10.14531/ss2009.1.76-80



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1810-8997 (Print)
ISSN 2313-1497 (Online)